
NPN Silicon Switching Transistor Qualified per MIL-PRF-19500/399

<u>Qualified Levels:</u> JAN, JANTX, AND JANTXV

DESCRIPTION

This 2N3960UB epitaxial planar transistor is military qualified up to the JANTXV level for high-reliability applications. It features a low profile ceramic UB package. This device is also available in a thru-hole TO-18 package.

UB Package

Also available in:

TO-18 package (leaded) 2N3960

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent of JEDEC registered 2N3960 number
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/366.
 (See part nomenclature for all available options.)
- · RoHS compliant

APPLICATIONS / BENEFITS

- General purpose transistors for medium power applications requiring high frequency switching
- Low profile ceramic package
- Lightweight
- Military and other high-reliability applications

MAXIMUM RATINGS @ T_C = +25 °C unless otherwise noted

Parameters / Test Conditions	Symbol	Value	Unit
Junction & Storage Temperature Range	T_J, T_{stg}	-65 to +200	°C
Collector-Emitter Voltage	V_{CEO}	12	V
Collector-Base Voltage	V _{CBO}	20	V
Emitter-Base Voltage	V _{EBO}	4.5	V
Total Power Dissipation @ $T_A = +25 ^{\circ}C^{(1)}$	P _T	400	mW

Notes: 1. Derate linearly 2.3 mW/°C above T_A = +25 °C

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and **PACKAGING**

- · CASE: Ceramic with kovar lid
- TERMINALS: Gold plating over nickel under plate.
- MARKING: Part number, date code, manufacturer's ID
- TAPE & REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: Less than 0.04 grams
- See Package Dimensions on last page.

PART NOMENCLATURE

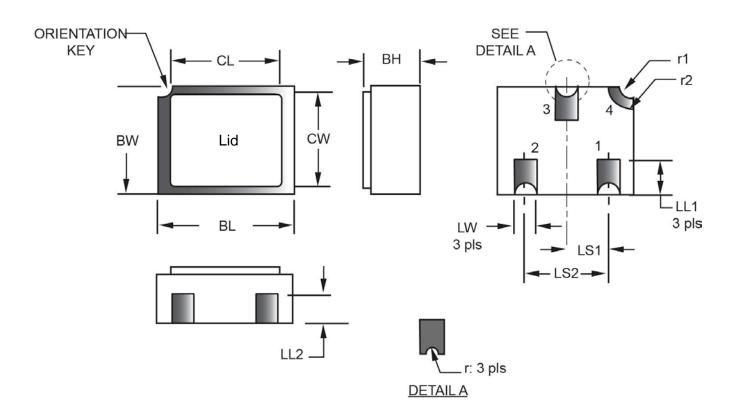
SYMBOLS & DEFINITIONS					
Symbol	Definition				
Ι _Β	Base current: The value of the dc current into the base terminal.				
Ic	Collector current: The value of the dc current into the collector terminal.				
V _{CB}	Collector-base voltage: The dc voltage between the collector and the base.				
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.				
V _{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.				
V _{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.				
V_{CC}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.				
V_{EB}	Emitter-base voltage: The dc voltage between the emitter and the base				
V _{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.				

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit					
OFF CHARACTERISTICS									
Collector-Emitter Breakdown Voltage									
$I_C = 10 \mu A$, pulsed	$V_{(BR)CEO}$	12		V					
Collector-Base Cutoff Current V _{CB} = 20 V	I _{CBO}		10	μА					
Emitter-Base Cutoff Current V _{EB} = 4.5 V	I _{EBO}		10	μА					
Collector-Emitter Cutoff Current $V_{CE} = 10 \text{ V}, V_{EB} = 0.4 \text{ V}$ $V_{CE} = 10 \text{ V}, V_{EB} = 2.0 \text{ V}$	I _{CEX1}		1 5	μA nA					

ON CHARACTERISTICS (1)

Forward-Current Transfer Ratio $I_C = 1.0 \text{ mA}, V_{CE} = 1 \text{ V}$ $I_C = 10 \text{ mA}, V_{CE} = 1 \text{ V}$ $I_C = 30 \text{ mA}, V_{CE} = 1 \text{ V}$	h _{FE}	40 60 30	300	
Collector-Emitter Saturation Voltage $I_C = 1.0$ mA, $I_B = 0.1$ mA $I_C = 30$ mA, $I_B = 3.0$ mA	V _{CE(sat)}		0.2 0.3	\
Base-Emitter Saturation Voltage $I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 30 \text{ mA}, V_{CE} = 1.0 \text{ V}$	V _{BE}		0.8 1.0	V


DYNAMIC CHARACTERISTICS

Forward Current Transfer Ratio, Magnitude $I_C = 5.0$ mA, $V_{CE} = 4$ V, $f = 100$ MHz $I_C = 10$ mA, $V_{CE} = 4$ V, $f = 100$ MHz $I_C = 30$ mA, $V_{CE} = 4$ V, $f = 100$ MHz	h _{fe}	13 14 12		
Output Capacitance $V_{CB} = 4 \text{ V}, I_E = 0, 100 \text{ kHz} \leq f \leq 1 \text{ MHz}$	C_obo		2.5	pF
Input Capacitance $V_{EB} = 0.5 \text{ V}, I_{C} = 0, 100 \text{ kHz} \leq f \leq 1.0 \text{ MHz}$	C _{ibo}		2.5	pF

⁽¹⁾ Pulse Test: pulse width = 300 μ s, duty cycle \leq 2.0%

PACKAGE DIMENSIONS

	Dimensions					Dimensions					
Symbol	Inch		Millimeters		Note	Symbol	Inch		Millimeters		Note
	Min	Max	Min	Max			Min	Max	Min	Max	
ВН	0.046	0.056	1.17	1.42		LS₁	0.035	0.040	0.89	1.02	
BL	0.115	0.128	2.92	3.25		LS ₂	0.071	0.079	1.80	2.01	
BW	0.085	0.108	2.16	2.74		LW	0.016	0.024	0.41	0.61	
CL	-	0.128		3.25		r	1	0.008	-	0.203	
CW	-	0.108		2.74		r ₁	1	0.012	-	0.305	
LL ₁	0.022	0.038	0.56	0.97		r ₂	•	0.022	-	0.559	
LL ₂	0.017	0.035	0.43	0.89							

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for information only.
- 3. Hatched areas on package denote metallized areas.
- 4. Lid material: Kovar
- 5. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 6. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.