Compliant

NPN Silicon Switching Transistor Qualified per MIL-PRF-19500/399

DESCRIPTION

This 2N3960UB epitaxial planar transistor is military qualified up to the JANTXV level for highreliability applications. It features a low profile ceramic UB package. This device is also available in a thru-hole TO-18 package.

Important: For the latest information, visit our website http://www.microsemi.com

FEATURES

- Surface mount equivalent of JEDEC registered 2N3960 number
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/366. (See part nomenclature for all available options.)
- RoHS compliant

APPLICATIONS / BENEFITS

- General purpose transistors for medium power applications requiring high frequency switching
- Low profile ceramic package
- Lightweight
- Military and other high-reliability applications

Qualified Levels:
JAN, JANTX, AND JANTXV

UB Package

Also available in:
TO-18 package (leaded) 2N3960

MSC - Lawrence

6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600

Fax: (978) 689-0803
MSC - Ireland
Gort Road Business Park, Ennis, Co. Clare, Ireland
Tel: +353 (0) 656840044
Fax: +353 (0) 656822298
Website:
www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic with kovar lid
- TERMINALS: Gold plating over nickel under plate.
- MARKING: Part number, date code, manufacturer's ID
- TAPE \& REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: Less than 0.04 grams
- See Package Dimensions on last page.

PART NOMENCLATURE

	JAN	2N3960	UB	
Reliability Level				Surface Mount package
JAN = JAN Level JANTX = JANTX Level				JEDEC type number
JANTXV = JANTXV Level Blank = Commercial				(see Electrical Characteristics table)

SYMBOLS \& DEFINITIONS	
Symbol	Definition
I_{B}	Base current: The value of the dc current into the base terminal.
I_{C}	Collector current: The value of the dc current into the collector terminal.
V_{CB}	Collector-base voltage: The dc voltage between the collector and the base.
$\mathrm{V}_{\mathrm{CBO}}$	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.
V_{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.
$\mathrm{V}_{\mathrm{CEO}}$	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.
V_{CC}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.
V_{EB}	Emitter-base voltage: The dc voltage between the emitter and the base
$\mathrm{V}_{\mathrm{EBO}}$	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.

ELECTRICAL CHARACTERISTICS @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$, pulsed	$\mathrm{V}_{\text {(BR)CEO }}$	12		V
Collector-Base Cutoff Current $V_{C B}=20 \mathrm{~V}$	$\mathrm{I}_{\text {CBO }}$		10	$\mu \mathrm{A}$
Emitter-Base Cutoff Current $V_{E B}=4.5 \mathrm{~V}$	$\mathrm{I}_{\text {Ebo }}$		10	$\mu \mathrm{A}$
Collector-Emitter Cutoff Current $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{EB}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{EB}}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{CEX} 1} \\ & \mathrm{I}_{\mathrm{CEX} 2} \end{aligned}$		$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{nA} \end{aligned}$

ON CHARACTERISTICS ${ }^{(1)}$

Forward-Current Transfer Ratio $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{l} \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 40 \\ & 60 \\ & 30 \end{aligned}$	300	
Collector-Emitter Saturation Voltage $\begin{aligned} & I_{\mathrm{C}}=1.0 \mathrm{~mA}, I_{\mathrm{B}}=0.1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, I_{\mathrm{B}}=3.0 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	V
Base-Emitter Saturation Voltage $\begin{aligned} & I_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{~V} \end{aligned}$	$V_{\text {bE }}$		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	V

DYNAMIC CHARACTERISTICS

Forward Current Transfer Ratio, Magnitude				
$\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$				
$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$		13		
$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$	$\mathrm{h}_{\mathrm{fe}} \mid$	14		
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{obo}}$		2.5	pF
Input Capacitance $\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{ibo}}$		2.5	pF

(1) Pulse Test: pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 2.0 \%$

PACKAGE DIMENSIONS

Symbol	Dimensions				Note	Symbol	Dimensions				Note
	Inch		Millimeters				Inch		Millimeters		
	Min	Max	Min	Max			Min	Max	Min	Max	
BH	0.046	0.056	1.17	1.42		LS_{1}	0.035	0.040	0.89	1.02	
BL	0.115	0.128	2.92	3.25		LS_{2}	0.071	0.079	1.80	2.01	
BW	0.085	0.108	2.16	2.74		LW	0.016	0.024	0.41	0.61	
CL	-	0.128	-	3.25		r	-	0.008	-	0.203	
CW	-	0.108	-	2.74		r_{1}	-	0.012	-	0.305	
LL_{1}	0.022	0.038	0.56	0.97		r_{2}	-	0.022	-	0.559	
LL_{2}	0.017	0.035	0.43	0.89							

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for information only.
3. Hatched areas on package denote metallized areas.
4. Lid material: Kovar
5. Pad $1=$ Base, Pad $2=$ Emitter, Pad $3=$ Collector, Pad $4=$ Shielding connected to the lid.
6. In accordance with ASME Y14.5M, diameters are equivalent to $\Phi \times$ symbology.
