
SIK Experiment Guide for the Arduino
101/Genuino 101 Board




Introduction: Arduino/Genuino
SparkFun Inventor's Kit
This SparkFun Inventor’s Kit Experiment Guide is your map for navigating
the waters of beginning embedded electronics using the Intel® Curie-based
Arduino 101® or Genuino 101® board. This guide contains all the
information you will need to explore the 21 circuits of the SparkFun
Inventor’s Kit for the Arduino 101. At the center of this guide is one core
philosophy – that anyone can (and should) play around with cutting-edge
electronics.

When you’re done with this guide, you’ll have the know-how to start
creating your own projects and experiments, from building robots and game
controllers to IoT (Internet of Things) and data logging, the world will be
your oyster. Now enough talking – let’s start inventing!

Note: For the purposes of this tutorial, we are using the Arduino 101
board. Alternatively, the Genuino 101 board, the SparkFun Inventor’s
Kit for Genuino 101, and Genuino IDE software could be used with
any experiment in this guide.

Included Materials

Here are all of the parts in the SparkFun Inventor’s Kit for the Arduino
101/Genuino 101 Board (101 SIK):

Page 1 of 128

• Arduino 101/Genuino 101 – The Arduino 101 or Genuino 101
board.

• Arduino and Breadboard Holder – A nice holder for your Arduino
101 / Genuino 101 board and breadboard.

• Breadboard – Excellent for making circuits and connections off the
Arduino.

• Carrying Case – Take your kit anywhere with ease.
• SparkFun Mini Screwdriver – To help you screw your RedBoard

onto the holder.
• 3.3V 16x2 White on Black LCD (with headers) – This is a basic 16-

character by 2-line display with a snazzy black background with white
characters and an operating voltage of 3.3V.

• 74HC595 Shift Register – Simple shift register IC. Clock in data and
latch it to free up IO pins on your RedBoard.

• NPN Transistors – This little transistor can be used to help drive
large loads, or to amplify or switch applications.

• Hobby Gearmotor Set – A set of hobby level motors with gearboxes
set to 120 RPM.

• Small Servo – Here is a simple, low-cost, high-quality servo for all
your mechatronic needs.

• SPDT Switch – This is a high-quality Single Pole - Double Throw
(SPDT) switch that fits well into a breadboard.

• TMP36 Temp Sensor – A sensor for detecting temperature changes.
• USB A to B Cable – This 6' cable provides you with a USB-A

connector at the host end and standard B connector at the device
end.

• Male-to-Male Jumper Wires – These are high-quality wires that
allow you to connect the female headers on the Arduino to the
components and breadboard.

• Photocell – A sensor to detect ambient light. Perfect for detecting
when a drawer is opened or when nighttime approaches.

• Tri-Color LED – Because everyone loves a blinky.
• Red, Blue, Yellow and Green LEDs – Light-Emitting Diodes make

great general indicators.
• Red, Blue, Yellow and Green Tactile Buttons – Go crazy with

different colored buttons.
• 10K Trimpots – Also known as a variable resistor, this is a device

commonly used to control volume and contrast, and makes a great
general user control input.

• Piezo Buzzer – Use this to make sounds and play songs.
• 100 Ohm Resistors – Great current-limiting resistors for LEDs at

3.3V, and strong pull-up resistors.
• 10K Ohm Resistors – These make excellent pull-ups, pull-downs

and current limiters.
• SparkFun Motor Driver – This nifty little board is perfect for

controlling the speed and direction of up to two separate motors.
• SparkFun Sound Detector Board – A microphone breakout board

that has three outputs: raw audio, envelope and GATE. This board is
perfect for simple sound-based projects.

Experiment List

The following is a list of the experiements you will complteye using this 101
SIK Experiment Guide. Alternatively, you can navigate around using the
buttons on the right.

• Experiment 1: Blinking an LED
• Experiment 2: Reading a Potentiometer
• Experiment 3: Driving an RGB LED
• Experiment 4: Driving Multiple LEDs
• Experiment 5: Reading a Button Press

Page 2 of 128

• Experiment 6: Reading an SPDT Switch
• Experiment 7: Reading a Photoresistor
• Experiment 8: Color Mixing with the RGB
• Experiment 9: Reading a Temperature Sensor
• Experiment 10: Driving a Servo Motor
• Experiment 11: Using a Transistor
• Experiment 12: Using the Motor Driver
• Experiment 13: Motor Driver with Inputs
• Experiment 14: Using a Piezo Buzzer
• Experiment 15: Using the Sound Detector Board
• Experiment 16: Using a Shift Register
• Experiment 17: Using an LCD
• Experiment 18: Reading the On-Board Accelerometer
• Experiment 19: Tap Detection
• Experiment 20: Using the On-Board Real Time Clock
• Experiment 21: Using the On-Board Bluetooth Low Energy

Suggested Reading

Before continuing with this guide, we recommend you be somewhat familiar
with the concepts in the following tutorials:

• Voltage, Current, Resistance, and Ohm’s Law - The most basic
concepts in electronics and electrical engineering. Get very familiar
with these concepts as they will be used throughout your electronics
adventure.

• What is a Circuit? - In this guide, we will be building a variety of
circuits. Understanding what that means is a vital to understanding
the Inventor’s Kit.

• How to Use a Breadboard – First time working with a breadboard?
Please check out this tutorial! It will help you understand why the
breadboard is great for prototyping and how to use one.

Open Source!

At SparkFun, our engineers and educators have been improving this kit and
coming up with new experiments for a long time. We would like to give
attribution to Oomlout, since we originally started working off the Arduino Kit
material many years ago. Both the Oomlout and SparkFun versions are
licensed under the Creative Commons Attribution Share-Alike 3.0 Unported
License.

To view a copy of this license visit this link, or write: Creative Commons,
171 Second Street, Suite 300, San Francisco, CA 94105, USA.

What is the 101?

Page 3 of 128

The Arduino 101 is a learning and development board that delivers the
performance and low-power consumption of the Intel Curie module with the
simplicity of Arduino at an entry-level price. This development board keeps
the same robust form factor and peripheral list of the UNO with the addition
of on-board Bluetooth Low Energy capabilities and a 6-axis accelerometer
and gyroscope called an Inertial Measurement Unit (IMU) to help you easily
expand your creativity into the connected world.

The Intel Curie module contains two tiny cores, an x86 (Quark) and a 32-bit
ARC architecture core, both clocked at 32MHz. The Intel tool chain
compiles your Arduino sketches optimally across both cores to accomplish
the most demanding tasks. The Arduino 101 board comes with 14 digital
input/output pins (of which four can be used as PWM outputs), six analog
inputs, a USB connector for serial communication and sketch upload, a
power jack, an ICSP header with SPI signals and I C dedicated pins. The
board operating voltage and I/O is 3.3V, but all pins are protected against
5V overvoltage.

Download and Setup the Arduino
Software

Download the Arduino IDE

In order to get your 101 up and running, you’ll need to download the newest
version of the Arduino software first from www.arduino.cc (it’s free and
open source!). This software, known as the Arduino IDE, will allow you to
program the board to do exactly what you want. It’s like a word processor
for writing programs. With an internet-capable computer, open up your
favorite browser, and go to Arduino download page.

Check out our Installing Arduino IDE tutorial to see in detail how to install
the Arduino IDE on your computer.

Adding Your Board to the Arduino IDE

Since the advent of Arduino version 1.6.2, Arduino has made it much easier
to add and update what boards you can program with the Arduino IDE. This
has been made possible by the Boards Manager. The Arduino 101 is not
part of the standard core set of boards that come with the original download
of the Arduino IDE, so you will have to add it through the Boards Manager.

To access the Boards Manager, open the Arduino IDE. From the dropdown
menu at the top select Tools > Board > Boards Manager…. This will bring
up the Boards Manager as shown below.

2

Page 4 of 128

In the Boards Manager search for “Intel Curie.” This should bring up one
option, which, at this time, is the 101. Select this option and click “Install.”
Depending on the speed of your network connection, this may take a few
minutes. This process is downloading the drivers your computer will need
for the board as well as the example code, libraries and board definitions. A
number of dialogue boxes will pop up asking you for permission to install
drivers and make changes to certain files; go ahead and accept those.

Once this process is complete, we recommend fully closing your Arduino
IDE and reopening it. Once it is open and ready, you can plug your 101 into
your computer using a USB cable.

Connect Your 101 to Your Computer

Use the USB cable provided in the SparkFun Inventor’s Kit (SIK) to connect
the 101 board to one of your computer’s USB inputs.

Getting Started in the Arduino IDE

Now, it’s finally time to open up the Arduino software. You’ll be presented
with a window that looks something like this:

1. Verify: Compiles and approves your code. It will catch errors in
syntax (like missing semicolons or parentheses).

2. Upload: Sends your code to the 101 board.
3. New: This buttons opens up a new code window tab.
4. Open: This button will let you open up an existing sketch.
5. Save: This saves the currently active sketch.
6. Serial Monitor: This will open a window that displays any serial

information your 101 board is transmitting. It is very useful for
debugging.

Page 5 of 128

7. Sketch Name: This shows the name of the sketch you are currently
working on.

8. Code Area: This is the area where you compose the code for your
sketch.

9. Message Area: This is where the IDE tells you if there were any
errors in your code.

10. Text Console: The text console shows complete error messages.
When debugging, the text console is very useful.

11. Board and Serial Port: Shows you what board and the serial port
selections.

Select Your Board: Arduino/Genuino 101

Before we can start jumping into the experiments, there are a few
adjustments we need to make. This step is required to tell the Arduino IDE
which of the many Arduino boards we have. Go up to the Tools menu.
Then hover over Board and make sure Arduino/Genuino 101 is selected.

Select a Serial Port

Next up we need to tell the Arduino IDE to which of our computer’s serial
ports the 101 is connected. Again,, go up to Tools, hover over Port, and
select your 101’s serial port. This will have Arduino 101 next to the port
number in parentheses.

Window Users: This is likely to be COM3 or higher (COM1 and COM2 are
usually reserved for hardware serial ports). If there are multiple COM ports
available, the 101 is likely the highest numbered port in the list. To be
certain, you can also disconnect your 101 and reopen the menu; the entry
that disappears should be the 101. Reconnect the board and select that
serial port.

Arduino IDE version 1.6.1 serial ports is under “Port.”

Page 6 of 128

Mac Users: Select the serial device of the 101 from the Tools, then hover
over Port. On the Mac, this should be something with /dev/tty.usbmodem
or /dev/tty.usbserial in it.

Arduino IDE version 1.6.1+ serial ports is under “Port.”

Linux Users: Please visit the Arduino Learning Linux section to learn more
about Arduino on Linux.

Download Arduino Code

You are so close to to being done with setup! Download the SIK Guide
Code. Click the following link to download the code:

101 SIK GUIDE CODE

Unzip and copy “101_SIK_Guide_Code” into the “examples” folder in the
Arduino folder.

Window Users: Unzip the file “101_SIK_Guide_Code.” It should be located
in your browser’s “Downloads” folder. Right click the zipped folder and
choose “unzip.” Copy the “SIK Guide Code” folder into Arduino’s folder
named “examples.”

Mac Users: Unzip the file “101_SIK_Guide_Code.” It should be located in
your browser’s “Downloads” folder. Right click the zipped folder and unzip.
Find “Arduino” in your applications folder. Right click (ctrl + click) on
“Arduino.” Select “Show Package Contents.” Then, click through folders
Contents > Resources > Java > Examples. Copy the “101 SIK Guide
Code” folder into Arduino’s folder named “examples.”

Experiment 1: Blinking an LED

Introduction

LEDs are small, powerful lights that are used in many different applications.
To start off, we will work on blinking an LED, the Hello World of
microcontrollers. That’s right – it’s as simple as turning a light on and off. It
might not seem like much, but establishing this important baseline will give
you a solid foundation as we work toward more complex experiments.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x LED
• 1x 100Ω Resistor
• 3x Jumper Wires

Didn’t Get the 101 SIK?

If you are conducting this experiment and didn’t get the 101 SIK, we

Page 7 of 128

suggest using these parts:

You will also need either an Arduino 101 OR Genuino 101 board.

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorial:

• Light-Emitting Diodes – Learn more about LEDs!

Introducing the LED

Breadboard - Self-Adhesive
(White)
 PRT-12002

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

LED - Basic Red 5mm
 COM-09590

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 8 of 128

A Light-Emitting Diode (LED) will only let current through it in one direction.
Think of an LED as a one-way street. When current flows through the LED,
it lights up! When you are looking at the LED, you will notice that its legs
are different lengths. The long leg, the “anode,” is where current enters the
LED. This pin should always be connected to the current source. The
shorter leg, the “cathode,” is the current’s exit. The short leg should always
be connected to a pathway to ground.

LEDs are finicky when it comes to how much current you apply to them.
Too much current can lead to a burnt-out LED. To restrict the amount of
current that passes through the LED, we use a resistor in line with the
power source and the LED’s long leg; this is called a current-limiting
resistor. With the 101 board, you should use a 100 Ohm resistor. We have
included a baggy of them in the kit just for this reason!

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram and
hookup table below to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard. Polarized
components can only be connected to a circuit in one
direction. Polarized components are highlighted with a
yellow warning triangle in the table below.

Please note: Pay close attention to the LED. The negative side of the
LED is the short leg, marked with a flat edge.



Page 9 of 128

Components like resistors need to have their legs bent into 90° angles in
order to correctly fit the breadboard sockets. You can also cut the legs
shorter to make them easier to work with on the breadboard.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open Your First Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 1 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_01

Page 10 of 128

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 11 of 128

language:cpp
/*
SparkFun Inventor's Kit for the Arduino / Genuino 101
Example sketch 01

BLINKING AN LED

Turn an LED on for one second, off for one second,
and repeat forever.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn about Arduino.
*/

//The setup function runs once upon your Arduino being powere
d or once upload is //complete.

void setup()
{
 //set pin 13 to OUTPUT
 pinMode(13, OUTPUT);
}

//The loop function runs from the top down and repeats itself
until you upload new //code or power down your Arduino
void loop()
{
 //Turn pin 13 HIGH (ON).
 digitalWrite(13, HIGH);

 //wait 1000 milliseconds (1 second)
 delay(1000);

 //Turn pin 13, LOW (OFF)
 digitalWrite(13, LOW);

 //wait 1000 milliseconds
 delay(1000);
}

Code to Note

pinMode(13, OUTPUT);

Before you can use one of the 101’s pins, you need to tell the board
whether it is an INPUT or OUTPUT. We use a built-in “function” called
pinMode() to do this.

digitalWrite(13, HIGH);

When you’re using a pin as an OUTPUT, you can command it to be HIGH
(output 3.3 volts), or LOW (output 0 volts).

What You Should See

You should see your LED blink on and off. If it doesn’t, make sure you have
assembled the circuit correctly and verified and uploaded the code to your
board, or see the Troubleshooting section.

Page 12 of 128

Troubleshooting

Program Not Uploading

This happens sometimes; the most likely cause is a confused serial port.
You can change this in Tools > Serial Port >

Also, if you get a Timeout error or the IDE could not find your 101 board, try
pressing the Master Reset button on the 101, wait around 10 seconds and
try re-uploading your sketch.

Still No Success

A broken circuit is no fun. Send us an email and we will get back to you as
soon as we can: techsupport@sparkfun.com

Experiment 2: Reading a Potentiometer

Introduction

In this circuit you will work with a potentiometer. You will learn how to use a
potentiometer to control the timing of a blinking LED by reading a sensor
and storing it as a variable, then using it as your delay timing.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x LED
• 1x 100Ω Resistor
• 7x Jumper Wires
• 1x Potentiometer

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

Breadboard - Self-Adhesive
(White)
 PRT-12002

Trimpot 10K with Knob
 COM-09806

Page 13 of 128

You will also need either an Arduino 101 OR Genuino 101 board.

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorial:

• Analog to Digital Conversion

Introducing the Potentiometer

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

LED - Basic Red 5mm
 COM-09590

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 14 of 128

A potentiometer is a resistance-based analog sensor that changes its
internal resistance based on the rotation of its knob. The potentiometer has
an internal voltage divider enabling you to read the change in voltage on
the center pin with a microcontroller (the 101 board). To hook up the
potentiometer, attach the two outside pins to a supply voltage (3.3V in this
circuit) and ground. It doesn’t matter which is connected where, as long as
one is connected to power, and the other to ground. The center pin is then
connected to an analog input pin so the 101 can measure the change in
voltage. When you twist the knob, the sensor reading will change!

Note: The potentiometer included in the kit has three marks on it that
will help you figure out which breadboard rows the pins are plugged
into.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram and
hookup table below to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard. Polarized
components can only be connected to a circuit in one
direction. Polarized components are highlighted with a
yellow warning triangle in the table.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch



Page 15 of 128

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 2 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_02

Copy and paste the following code into the Arduino IDE. Hit upload,
and see what happens!

Page 16 of 128

language:cpp
/* SparkFun Inventor's Kit
Example sketch 02

POTENTIOMETER

 Measure the position of a potentiometer and use it to
 control the blink rate of an LED. Turn the knob to make
 it blink faster or slower!

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn about Arduino.
*/

//Create global variables (variables that can be used anywher
e in our sketch)

// Here we're creating a variable called "sensorPin" of type
"int"
// and initializing it to have the value "0," which is the ana
log input pin the pot is //conected to.
int sensorPin = 0;

// Variable for storing the pin number that the LED is connect
ed to
int ledPin = 13;

// this function runs once when the sketch starts up
void setup()
{
 //set ledPin (13) as an OUTPUT
 pinMode(ledPin, OUTPUT);
}

// this function runs repeatedly after setup() finishes
void loop()
{

 //create a local variable (variable that can only be used in
side of loop() to store //a sensor value called sensorVa
lue
 int sensorValue;

 //use the analogRead() function to read sensorPin and store
the value in sensorValue
 sensorValue = analogRead(sensorPin);

 // Turn the LED on
 digitalWrite(ledPin, HIGH);

 delay(sensorValue);

 // Turn the LED off
 digitalWrite(ledPin, LOW);

 //delay for the value of sensorValue
 delay(sensorValue);

Page 17 of 128

 //loop back to the top
}

Code to Note

int sensorValue;

A “variable” is a placeholder for values that may change in your code. You
must introduce, or “declare,” variables before you use them; here you are
declaring a variable called sensorValue, of type “int” (integer). Don’t forget
that variable names are case sensitive!

sensorValue = analogRead(sensorPin);

Use the analogRead() function to read the value on an analog pin.
analogRead() takes one parameter, the analog pin you want to use

(“sensorPin”), and returns a number (“sensorValue”) between 0 (0 volts)
and 1023 (3.3 volts).

delay(sensorValue);

Microcontrollers are very fast, capable of running thousands of lines of code
each second. To slow it down so that we can see what it’s doing, we’ll often
insert delays into the code. delay() counts in milliseconds; there are 1000
ms in one second.

What You Should See

You should see the LED blink faster or slower in accordance with your
potentiometer. If it isn’t working, make sure you have assembled the circuit
correctly and verified and uploaded the code to your board, or see the
Troubleshooting section.

Troubleshooting

Sporadically Working

This is most likely due to a slightly dodgy connection with the
potentiometer’s pins. This can usually be conquered by holding the
potentiometer down or moving the potentiometer circuit somewhere else on
your breadboard.

Not Working

Make sure you haven’t accidentally connected the wiper (center pin), the
resistive element in the potentiometer, to digital pin 0 rather than analog pin
0 (the row of pins beneath the power pins).

LED Not Lighting Up

LEDs will only work in one direction. Double check your connections.

Page 18 of 128

Experiment 3: Driving an RGB LED

Introduction

You know what’s even more fun than a blinking LED? Changing colors with
one LED. In this circuit, you’ll learn how to use an RGB LED to create
unique color combinations. Depending on how bright each diode is, nearly
any color is possible!

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x Common Cathode RGB LED
• 3x 100Ω Resistors
• 6x Jumper Wires

Didn’t Get the 101 SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

You will also need either an Arduino 101 OR Genuino 101 board.

Breadboard - Self-Adhesive
(White)
 PRT-12002

LED - RGB Clear Common
Cathode
 COM-00105

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 19 of 128

Introducing the Red Green Blue (RGB) LED

The Red Green Blue (RGB) LED is 3 LEDs in one. The RGB has four pins
with each of the three shorter pins controlling an individual color: red, green
or blue. The longer pin of the RGB is the common ground pin. You can
create a custom colored LED by turning different colors on and off to
combine them. For example, if you turn on the red pin and green pin, the
RGB will light up as yellow.

But which pin is which color? Pick up the RGB so that the longest pin
(common ground) is aligned to the left as shown in the graphic below. The
pins are Red, Ground, Green, and Blue – starting from the far left.

Note: When wiring the RGB, each colored pin still needs a current-
limiting resistor in line with the 101 pin that you plan to use to control
it, as with any standard LED.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram and
hookup table below to see how everything is connected.

Page 20 of 128

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard. Polarized
components can only be connected to a circuit in one
direction. Polarized components are highlighted with a
yellow warning triangle in the table below.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 3 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples >101 SIK Guide Code >
Circuit_03

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 21 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 03

RGB LED

Make an RGB LED display a rainbow of colors!

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn about the Arduino.
*/

//create variables for pin numbers. We are making them constan
ts here, because they //never change.
const int RED_PIN = 5;
const int GREEN_PIN = 6;
const int BLUE_PIN = 9;

// How fast we plan to cycle through colors in milliseconds
int DISPLAY_TIME = 10;

void setup()
{
//set the three pin variables as outputs
pinMode(RED_PIN, OUTPUT);
pinMode(GREEN_PIN, OUTPUT);
pinMode(BLUE_PIN, OUTPUT);
}

void loop()
{
// We've written a custom function called mainColors() that st
eps
// through all eight of these colors. We're only "calling" the
// function here (telling it to run). The actual function code
// is further down in the sketch.
mainColors();

}

// Here's the mainColors() custom function we've written.
void mainColors()
{
// Off (all LEDs off):
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, LOW);

//wait 1 second
delay(1000);

// Red (turn just the red LED on):
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, LOW);

Page 22 of 128

//wait 1 seconds
delay(1000);

// Green (turn just the green LED on):
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, LOW);

//wait 1 second
delay(1000);

// Blue (turn just the blue LED on):
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, HIGH);

//wait 1 second
delay(1000);

// Yellow (turn red and green on):
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, LOW);

//wait 1 second
delay(1000);

// Cyan (turn green and blue on):
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, HIGH);

//wait 1 second
delay(1000);

// Purple (turn red and blue on):
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, HIGH);

//wait 1 second
delay(1000);

// White (turn all the LEDs on):
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, HIGH);

//wait 1 second
delay(1000);
}

Code to Note

language:cpp
for (x = 0; x < 768; x++)
{}

A for() loop is used to repeat an action a set number of times across a
range, and repeatedly runs code within the brackets {}. Here the variable “x”
starts a 0, ends at 767, and increases by one each time (“x++”).

Page 23 of 128

language:cpp
if (x <= 255)
{}
else
{}

“If / else” statements are used to make choices in your programs. The
statement within the parenthesis () is evaluated; if it’s true, the code within
the first brackets {} will run. If it’s not true, the code within the second
brackets {} will run.

What You Should See

You should see your LED turn on, but this time in new, crazy colors! If it
isn’t, make sure you have assembled the circuit correctly and verified and
uploaded the code to your board, or see the Troubleshooting section.

Troubleshooting

LED Remains Dark or Shows Incorrect Color

With the four pins of the LED so close together, it’s sometimes easy to
misplace one. Double check each pin is where it should be.

Seeing Red

The red diode within the RGB LED may be a bit brighter than the other two.
To make your colors more balanced, use a higher ohm resistor.

Experiment 4: Driving Multiple LEDs

Introduction

Now that you’ve gotten your LED to blink on and off, it’s time to up the
stakes a little bit – by connecting six LEDs at once. We’ll also give your
101 board a little test by creating various lighting sequences. This
experiment is a great setup to start practicing writing your own programs
and getting a feel for the way your 101 board works.

Along with controlling the LEDs, you’ll learn a few programming tricks that
keep your code neat and tidy!

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 6x LEDs
• 6x 100Ω Resistors
• 7x Jumper Wires

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

Page 24 of 128

You will also need either an Arduino 101 OR Genuino 101 board.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram and
hookup table below to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Breadboard - Self-Adhesive
(White)
 PRT-12002

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

LED - Basic Red 5mm
 COM-09590

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850



Page 25 of 128

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 4 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_04

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 26 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 04

MULTIPLE LEDs

 Make six LEDs dance. Dance LEDs, dance!

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

// To keep track of all the LED pins, we'll use an "array."
// An array lets you store a group of variables, and refer to
them
// by their position, or "index." Here we're creating an arra
y of
// six integers, and initializing them to a set of values:
int ledPins[] = {4,5,6,7,8,9};

void setup()
{
 //create a local variable to store the index of which pin w
e want to control
 int index;

 // For the for() loop below, these are the three statements:

 // 1. index = 0; Before starting, make index = 0.
 // 2. index <= 5; If index is less or equal to 5, run th
e following code
 // 3. index++ Putting "++" after a variable means "add o
ne to it".

 // When the test in statement 2 is finally false, the sketch
 // will continue.

 // This for() loop will make index = 0, then run the pinMode
()
 // statement within the brackets. It will then do the same t
hing
 // for index = 2, index = 3, etc. all the way to index = 5.

 for(index = 0; index <= 5; index++)
 {
 pinMode(ledPins[index],OUTPUT);
 }
}

void loop()
{
 // This loop() calls functions that we've written further be
low.
 // We've disabled some of these by commenting them out (putt

Page 27 of 128

ing
 // "//" in front of them). To try different LED displays, re
move
 // the "//" in front of the ones you'd like to run, and add
"//"
 // in front of those you don't to comment out (and disable)
those
 // lines.

 // Light up all the LEDs in turn
 oneAfterAnotherNoLoop();

 // Same as oneAfterAnotherNoLoop, but less typing
 //oneAfterAnotherLoop();

 // Turn on one LED at a time, scrolling down the line
 //oneOnAtATime();

 // Light the LEDs middle to the edge
s
 //pingPong();

 // Chase lights like you see on signs
 //marquee();

 // Blink LEDs randomly
 //randomLED();
}

/*
oneAfterAnotherNoLoop()
This function will light one LED, delay for delayTime, then li
ght
the next LED, and repeat until all the LEDs are on. It will th
en
turn them off in the reverse order.
*/

void oneAfterAnotherNoLoop()
{
// time (milliseconds) to pause between LEDs
 int delayTime = 100;

 // turn all the LEDs on:

 digitalWrite(ledPins[0], HIGH); //Turns on LED #0 (pin 4)
 delay(delayTime); //wait delayTime millisecon
ds
 digitalWrite(ledPins[1], HIGH); //Turns on LED #1 (pin 5)
 delay(delayTime); //wait delayTime millisecon
ds
 digitalWrite(ledPins[2], HIGH); //Turns on LED #2 (pin 6)
 delay(delayTime); //wait delayTime millisecon
ds
 digitalWrite(ledPins[3], HIGH); //Turns on LED #3 (pin 7)
 delay(delayTime); //wait delayTime millisecon
ds
 digitalWrite(ledPins[4], HIGH); //Turns on LED #4 (pin 8)
 delay(delayTime); //wait delayTime millisecon
ds
 digitalWrite(ledPins[5], HIGH); //Turns on LED #5 (pin 9)
 delay(delayTime); //wait delayTime millisecon
ds

Page 28 of 128

 // turn all the LEDs off:

 digitalWrite(ledPins[5], LOW); //Turn off LED #5 (pin 9)
 delay(delayTime); //wait delayTime millisecon
ds
 digitalWrite(ledPins[4], LOW); //Turn off LED #4 (pin 8)
 delay(delayTime); //wait delayTime millisecon
ds
 digitalWrite(ledPins[3], LOW); //Turn off LED #3 (pin 7)
 delay(delayTime); //wait delayTime millisecon
ds
 digitalWrite(ledPins[2], LOW); //Turn off LED #2 (pin 6)
 delay(delayTime); //wait delayTime millisecon
ds
 digitalWrite(ledPins[1], LOW); //Turn off LED #1 (pin 5)
 delay(delayTime); //wait delayTime millisecon
ds
 digitalWrite(ledPins[0], LOW); //Turn off LED #0 (pin 4)
 delay(delayTime); //wait delayTime millisecon
ds
}

/*
oneAfterAnotherLoop()

This function does exactly the same thing as oneAfterAnotherNo
Loop(),
but it takes advantage of for() loops and the array to do it w
ith
much less typing.
*/

void oneAfterAnotherLoop()
{
 int index;
 int delayTime = 100; // milliseconds to pause between LEDs
 // make this smaller for faster switchi
ng

 // Turn all the LEDs on:

 // This for() loop will step index from 0 to 5
 // (putting "++" after a variable means add one to it)
 // and will then use digitalWrite() to turn that LED on.

 for(index = 0; index <= 5; index++)
 {
 digitalWrite(ledPins[index], HIGH);
 delay(delayTime);
 }

 // Turn all the LEDs off:

 // This for() loop will step index from 5 to 0
 // (putting "­­" after a variable means subtract one from i
t)
 // and will then use digitalWrite() to turn that LED off.

 for(index = 5; index >= 0; index­­)
 {
 digitalWrite(ledPins[index], LOW);
 delay(delayTime);
 }

Page 29 of 128

}

/*
oneOnAtATime()

This function will step through the LEDs,
lighting only one at at time.
*/

void oneOnAtATime()
{
 int index;
 int delayTime = 100; // milliseconds to pause between LEDs
 // make this smaller for faster switchi
ng

 // step through the LEDs, from 0 to 5

 for(index = 0; index <= 5; index++)
 {
 digitalWrite(ledPins[index], HIGH); // turn LED on
 delay(delayTime); // pause to slow down
 digitalWrite(ledPins[index], LOW); // turn LED off
 }
}

/*
pingPong()

This function will step through the LEDs,
lighting one at at time in both directions.
*/

void pingPong()
{
 int index;
 int delayTime = 100; // milliseconds to pause between LEDs
 // make this smaller for faster switchi
ng

 // step through the LEDs, from 0 to 5

 for(index = 0; index <= 5; index++)
 {
 digitalWrite(ledPins[index], HIGH); // turn LED on
 delay(delayTime); // pause to slow down
 digitalWrite(ledPins[index], LOW); // turn LED off
 }

 // step through the LEDs, from 5 to 0

 for(index = 5; index >= 0; index­­)
 {
 digitalWrite(ledPins[index], HIGH); // turn LED on
 delay(delayTime); // pause to slow down
 digitalWrite(ledPins[index], LOW); // turn LED off
 }
}

/*
marquee()

Page 30 of 128

This function will mimic "chase lights" like those around sign
s.
*/

void marquee()
{
 int index;
 int delayTime = 200; // milliseconds to pause between LEDs
 // Make this smaller for faster switchi
ng

 // Step through the first four LEDs
 // (We'll light up one in the lower 3 and one in the upper
3)

 for(index = 0; index <= 2; index++) // Step from 0 to 3
 {
 digitalWrite(ledPins[index], HIGH); // Turn a LED on
 digitalWrite(ledPins[index+3], HIGH); // Skip four, and t
urn that LED on
 delay(delayTime); // Pause to slow do
wn the sequence
 digitalWrite(ledPins[index], LOW); // Turn the LED off
 digitalWrite(ledPins[index+3], LOW); // Skip four, and t
urn that LED off
 }
}

/*
randomLED()

This function will turn on random LEDs. Can you modify it so i
t
also lights them for random times?
*/

void randomLED()
{
 int index;
 int delayTime;

 // The random() function will return a semi­random number ea
ch
 // time it is called. See http://arduino.cc/en/Reference/Ran
dom
 // for tips on how to make random() even more random.

 index = random(5); // pick a random number between 0 and
5
 delayTime = 100;

 digitalWrite(ledPins[index], HIGH); // turn LED on
 delay(delayTime); // pause to slow down
 digitalWrite(ledPins[index], LOW); // turn LED off
}

Code to Note

int ledPins[] = {4,5,6,7,8,9};

When you have to manage a lot of variables, an “array” is a handy way to
group them together. Here we’re creating an array of integers, called
ledPins, with six elements. Each element is referenced by its index. The
first element is the index of [0].

Page 31 of 128

digitalWrite(ledPins[0], HIGH);

You refer to the elements in an array by their position. The first element is
at position 0, the second is at position 1, etc. You refer to an element using
“ledPins[x]” where x is the position. Here we’re making digital pin 4 HIGH,
since the array element at position 0 is “4.”

index = random(5);

Computers like to do the same things each time they run. But sometimes
you want to do things randomly, such as simulating the roll of a dice. The
random() function is a great way to do this. See

http://arduino.cc/en/reference/random for more information.

What You Should See

This is similar to Experiment 1, but instead of one LED, you should see all
the LEDs blink. If they don’t, make sure you have assembled the circuit
correctly and verified and uploaded the code to your board, or see the
Troubleshooting section.

Troubleshooting

Some LEDs Fail to Light

It is easy to insert an LED backward. Check the LEDs that aren’t working
and ensure they are in the correct orientation.

Operating out of Sequence

With eight wires it’s easy to cross a couple. Double check that the first LED
is plugged into pin 4 and each pin thereafter.

Starting Fresh

It’s easy to accidentally misplace a wire without noticing. Pulling everything
out and starting with a fresh slate is often easier than trying to track down
the problem.

Experiment 5: Reading a Button Press

Introduction

Up until now, we’ve focused mostly on outputs. Now we’re going to go to
the other end of spectrum and play around with inputs. In Experiment 2, we
used an analog input to read the potentiometer. In this experiment, we’ll be
reading one of the most common and simple inputs – a push button – by
using a digital input. We will use it to cycle through different colors on the
RGB.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x RGB LED

Page 32 of 128

• 3x 100Ω Resistor
• 8x Jumper Wires
• 1x Push Button
• 1x 10K Resistors

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

You will also need either an Arduino 101 OR Genuino 101 board.

Breadboard - Self-Adhesive
(White)
 PRT-12002

LED - RGB Clear Common
Cathode
 COM-00105

Momentary Pushbutton
Switch - 12mm Square
 COM-09190

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Resistor 10K Ohm 1/6th Watt
PTH - 20 pack
 COM-11508

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 33 of 128

Suggested Reading

Before continuing with this tutorial, we recommend you be somewhat
familiar with the concepts in these tutorials:

• Switch Basics
• Analog vs. Digital

Introducing the Push Button

A momentary push button closes or completes the circuit only while it is
being pressed. The button has four pins, which are broken out into two sets
of two pins. When you press down on the button and get a nice “click,” the
button bridges the two sets of pins and allows current to flow through the
circuit.

How do you know which pins are paired up? The buttons included in this kit
will only fit across the breadboard ditch in one direction. Once you get the
button pressed firmly into the breadboard (across the ditch), the pins are
horizontally paired. The pins toward the top of the breadboard are
connected, and the pins toward the button of the breadboard are
connected.

Note: Not all buttons share this pin format. Please refer to the data
sheet of your specific button to determine which pins are paired up.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram and
hookup table below to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment



Page 34 of 128

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Digital Input

Previously we’ve used the analog pins for input; now we’ll use the digital
pins for input as well. Because digital pins only know about HIGH and LOW
signals, they’re perfect for interfacing to pushbuttons and switches that also
only have “on” and “off” states.

We’ll connect one side of the pushbutton to ground, and the other side to a
digital pin. When we press down on the pushbutton, the pin will be
connected to ground, and therefore will be read as “LOW” by the Arduino
board.

But wait – what happens when you’re not pushing the button? In this state,
the pin is disconnected from everything, which we call “floating.” What will
the pin read as then, HIGH or LOW? It’s hard to say, because there’s no
solid connection to either 3.3V or ground. The pin could read as either one.

To deal with this issue, we’ll connect a small (10K, or 10,000 Ohm)
resistance between the signal pin and 3.3V. This “pullup” resistor will
ensure that when you’re NOT pushing the button, the pin will still have a
weak connection to 3.3 volts, and therefore read as HIGH.

Advanced: When you get used to pullup resistors and know when they’re
required, you can activate internal pullup resistors on the ATmega
processor in Arduino. See http://arduino.cc/en/Tutorial/DigitalPins for
information.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 5 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_05

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 35 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 05

PUSH BUTTONS

 Use pushbuttons for digital input

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn about the Arduino.

*/

// First we'll set up constants for the pin numbers.
// This will make it easier to follow the code below.

 // pushbutton pin
 const int buttonPin = 3;

 //RGB LED pins
 const int redPin = 11;
 const int greenPin = 10;
 const int bluePin = 9;

//create a variable to store a counter and set it to 0
int counter = 0;
void setup()
{
 // Set up the pushbutton pins to be an input:
 pinMode(buttonPin, INPUT);

 // Set up the RGB pins to be an outputs:
 pinMode(redPin, OUTPUT);
 pinMode(greenPin,OUTPUT);
 pinMode(bluePin,OUTPUT);
}

void loop()
{
 // local variable to hold the pushbutton states
 int buttonState;

 //read the digital state of buttonPin with digitalRead() fun
ction and store the //value in buttonState variable
 buttonState = digitalRead(buttonPin);

 //if the button is pressed increment counter and wait a tin
y bit to give us some //time to release the button
 if (buttonState == LOW) // light the LED
 {
 counter++;
 delay(150);
 }

 //use the if satement to check the value of counter. If coun
ter is equal to 0 all //pins are off

Page 36 of 128

 if(counter == 0)
 {
 digitalWrite(redPin,LOW);
 digitalWrite(greenPin,LOW);
 digitalWrite(bluePin,LOW);
 }

 //else if counter is equal to 1, redPin is HIGH
 else if(counter == 1)
 {
 digitalWrite(redPin,HIGH);
 digitalWrite(greenPin,LOW);
 digitalWrite(bluePin,LOW);
 }

 //else if counter is equal to 2 greenPin is HIGH
 else if(counter ==2)
 {
 digitalWrite(redPin,LOW);
 digitalWrite(greenPin,HIGH);
 digitalWrite(bluePin,LOW);
 }

 //else if counter is equal to 3 bluePin is HIGH
 else if(counter ==3)
 {
 digitalWrite(redPin,LOW);
 digitalWrite(greenPin,LOW);
 digitalWrite(bluePin,HIGH);
 }

 //else reset the counter to 0 (which turns all pins off)
 else
 {
 counter =0;
 }
}

Code to Note

pinMode(buttonPin, INPUT);

The digital pins can be used as inputs as well as outputs. Before you do
either, you need to tell the Arduino which direction you’re going.

buttonState = digitalRead(buttonPin);

To read a digital input, you use the digitalRead() function. It will return
HIGH if there’s 3.3V present at the pin, or LOW if there’s 0V present at the
pin.

if (button1State == LOW)

Because we’ve connected the button to GND, it will read LOW when it’s
being pressed. Here we’re using the “equivalence” operator (“==”) to see if
the button is being pressed.

What You Should See

You should see the LED turn on if you press either button, and off if you
press both buttons. (See the code to find out why!) If it isn’t working, make
sure you have assembled the circuit correctly and verified and uploaded the
code to your board, or see the Troubleshooting section.

Page 37 of 128

Troubleshooting

Light Not Turning On

The pushbutton is square, and because of this it is easy to put it in the
wrong way. Give it a 90 degree twist and see if it starts working.

Underwhelmed

No worries; these circuits are all super stripped-down to make playing with
the components easy, but once you throw them together the sky is the limit.

Experiment 6: Reading a SPDT Switch

Introduction

In the previous experiment you used a button as a digital input. In this
experiment you are going to explore another digital input, the SPDT (Single
Pole - Double Throw) switch. You will use that switch to select which of the
two LEDs will blink.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 2x LED (1 Red, 1 Yellow)
• 2x 100Ω Resistor
• 8x Jumper Wires
• 1x SPDT Switch

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

Breadboard - Self-Adhesive
(White)
 PRT-12002

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Page 38 of 128

You will also need either an Arduino 101 OR Genuino 101 board.

Suggested Reading

Before continuing with this tutorial, we recommend you be somewhat
familiar with the concepts in these tutorials:

• Switch Basics
• Analog vs. Digital
• Digital Logic

Introducing the Single Pole - Double Throw
(SPDT) Switch

SPDT Mini Power Switch
 COM-00102

LED - Basic Red 5mm
 COM-09590

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 39 of 128

The Single Pole - Double Throw (SPDT) switch has a common pin in the
middle and then two other pins that, depending on the location of the
switch, are either connected to the common (center) pin or not. To read the
switch in a similar way to a button, you connected the common pin to a
digital General Purpose Input/Output (GPIO) pin on your 101 board and the
other pins to 3.3V and ground. It doesn’t matter which pin is which. When
you move the switch, the common pin will either be HIGH (connected to
3.3V) or LOW (connected to ground).

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram and
hookup table below, to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 6 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_06

You can also copy and paste the following code into the Arduino IDE. Hit



Page 40 of 128

upload, and see what happens!

Page 41 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 06

SPDT Switch

Use a Single Pole ­ Double Throw Switch (SPDT) to select an LE
D to blink

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

// Create constants for the pins we will be using
const int switchPin = 3;
const int led1Pin = 12;
const int led2Pin = 13;

void setup()
{
 // Set up the switch pins to be an input:
 pinMode(switchPin, INPUT);

 // Set up the LED pins to be an output:
 pinMode(led1Pin,OUTPUT);
 pinMode(led2Pin,OUTPUT);
}

void loop()
{
 // variables to hold the switch state
 int switchVal;

 // Since a switch has only two states, either HIGH (3.3V)
 // or LOW (GND) there is no way for you to have a floating p
oint situation so there //is no need for a pulldown resi
stor.

 //store the switch value to the switchVal variable
 switchVal = digitalRead(switchPin);

 //if switchVal is HIGH blink led1Pin
 if(switchVal == HIGH)
 {
 digitalWrite(led1Pin,HIGH);
 delay(500);
 digitalWrite(led1Pin,LOW);
 delay(500);
 }
 //else blink led2Pin
 else
 {
 digitalWrite(led2Pin,HIGH);
 delay(500);
 digitalWrite(led2Pin,LOW);
 delay(500);

Page 42 of 128

 }
}

Code to Note

pinMode(switchPin, INPUT);

The digital pins can be used as inputs as well as outputs. Before you do
either, you need to tell the Arduino 101 which direction you’re going.

switchVal = digitalRead(switchPin);

To read a digital input, you use the digitalRead() function. It will return
HIGH if there’s 3.3V present at the pin, or LOW if there’s 0V present at the
pin.

if (switchVal == LOW)

Because we’ve connected the button to GND, it will read LOW when it’s
being pressed. Here we’re using the “equivalence” operator (“==”) to see if
the button is being pressed.

What You Should See

Depending on the state of the switch, a different LED will blink. If you move
the switch to connect the signal pin to 3.3V (HIGH) then LED 1 will blink. If
you flip the switch and ground the signal pin then LED 2 will start blinking
and LED 1 will turn off.

Troubleshooting

Light Not Turning On

The wires for the switch are right next to each other. Make sure that signal
is in the center with voltage and ground on the outside pins. If you connect
ground and voltage your board will short out and shut down.

Make sure your power LED is on. If it is off, pull the signal wire from pin 3
and see if that changes anything. If you short circuit your 101 board it will
turn itself off to protect the circuitry. You may also have to restart your
computer to regain access to your serial port.

Underwhelmed

No worries; these circuits are all super stripped-down to make playing with
the components easy, but once you throw them together the sky is the limit.

Experiment 7: Reading a Photoresistor

Introduction

In Experiment 2, you got to use a potentiometer, which varies resistance
based on the twisting of a knob and, in turn, changes the voltage being
read by the analog input pin. In this circuit you’ll be using a photoresistor,
which changes resistance based on how much light the sensor receives.

Page 43 of 128

You will read the light value of the room and have an LED turn on if it is
dark and turn off if it is bright. That’s right; you are going to build a night
light!

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x LED
• 1x 100Ω Resistor
• 7x Jumper Wires
• 1x Photoresistor
• 1x 10K Resistor

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

You will also need either an Arduino 101 OR Genuino 101 board.

Breadboard - Self-Adhesive
(White)
 PRT-12002

Mini Photocell
 SEN-09088

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

LED - Basic Red 5mm
 COM-09590

Resistor 10K Ohm 1/6th Watt
PTH - 20 pack
 COM-11508

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Page 44 of 128

Introducing the Photoresistor

The photoresistor changes its resistance based on the light to which it is
exposed. To use this with the 101 board, you will need to build a voltage
divider with a 10K Ohm resistor as shown in the wiring diagram for this
experiment. The 101 board cannot read a change in resistance, only a
change in voltage. A voltage divider allows you to translate a change in
resistance to a corresponding voltage value.

The voltage divider enables the use of resistance-based sensors like the
photoresistor in a voltage-based system. As you explore different sensors,
you will find more resistance-based sensors that only have two pins like the
photoresistor. To use them with your 101 board you will need to build a
voltage divider like the one in this experiment. To learn more about
resistors in general, check out our tutorial on resistors and also our tutorial
on voltage dividers.

Note: Make sure you are using the 10K Ohm resistor in your voltage
divider with the sensors in this kit. Otherwise you will get odd and
inconsistent results.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850



Page 45 of 128

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 7 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_07

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 46 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 07

PHOTORESISTOR

 Read a photoresistor (light sensor) to detect "darkness" an
d turn on an LED when it is "dark" and turn back off again whe
n it is "bright."

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

// As usual, we'll create constants to name the pins we're usi
ng.
// This will make it easier to follow the code below.

const int sensorPin = 0;
const int ledPin = 9;

// We'll also set up some global variables for the light leve
l a calibration value and //and a raw light value
int lightCal;
int lightVal;

void setup()
{
 // We'll set up the LED pin to be an output.
 pinMode(ledPin, OUTPUT);
 lightCal = analogRead(sensorPin);
 //we will take a single reading from the light sensor and st
ore it in the lightCal //variable. This will give us a
prelinary value to compare against in the loop
}

void loop()
{
 //Take a reading using analogRead() on sensor pin and store
it in lightVal
 lightVal = analogRead(sensorPin);

 //if lightVal is less than our initial reading (lightCal) mi
nus 50 it is dark and //turn pin 9 HIGH. The (­50) par
t of the statement sets the sensitivity. The smaller //t
he number the more sensitive the circuit will be to variances
in light.
 if(lightVal < lightCal ­ 50)
 {
 digitalWrite(9,HIGH);
 }

 //else, it is bright, turn pin 9 LOW
 else
 {

Page 47 of 128

 digitalWrite(9,LOW);
 }

}

Code to Note

lightCal = analogRead(sensorPin); lightCal is a calibration variable.
Your 101 board takes a single reading of the light sensor in the setup and
uses this value to compare against the lightVal in the loop. This value
doesn’t change in the loop, as it is set in the setup function. To update this
value you can press the RESET button or power cycle the board.

if(lightVal < lightCal ­50) If the light value variable that is constantly
being updated in the loop is less than the calibration value set in the setup
minus 50, it is dark and the LED should turn on. The (-50) portion of this
statement is a sensitivity value. The higher the value, the less sensitive the
circuit will be; the lower the value, the more sensitive it will be to lighting
conditions.

What You Should See

You should see the LED turn on when it is darker and turn off when it is
brighter. Try putting your hand over the sensor and then removing it. If it
isn’t working, make sure you have assembled the circuit correctly and
verified and uploaded the code to your board, or see the Troubleshooting
section.

Troubleshooting

LED Remains Dark

You may have been casting a shadow over the sensor when you uploaded
your code. Make sure the sensor is exposed to the ambient light of the
room and press the MASTER RESET button or re-upload your code. This
will reset the calibration value in the setup.

Still Not Quite Working

You may have your logical statement wrong. Double check your code and
try adjusting the sensitivity level a little lower or higher. Make sure there is
no semicolon after the if() statement. This is a common error and a tricky
one to find!

Experiment 8: Color Mixing with the
RGB

Introduction

In this circuit you’ll work with multiple potentiometers. You used a single
potentiometer in Experiment 1. Now we are going to dial it up a few notches
and use three of them! Why three of them? You are going to use each

Page 48 of 128

potentiometer to control the brightness of the three colors (Red, Green and
Blue) of an RGB LED to make some more interesting colors than the basic
ones you used in Experiment 3.

Get your paint brush out and be ready to paint the rainbow!

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x Common Cathode RGB LED
• 3x 100Ω Resistor
• 15x Jumper Wires
• 3x Potentiometer

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

You will also need either an Arduino 101 OR Genuino 101 board.

Breadboard - Self-Adhesive
(White)
 PRT-12002

Trimpot 10K with Knob
 COM-09806

LED - RGB Clear Common
Cathode
 COM-00105

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Page 49 of 128

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorials:

• Analog to Digital Conversion
• Pulse Width Modulation

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram and
hookup table below to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard. Polarized
components can only be connected to a circuit in one
direction. Polarized components are highlighted with a
yellow warning triangle, in the table.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 8 by accessing
the “SIK Guide Code” you downloaded and placed into your “Examples”
folder earlier.

To open the code go to: File > Examples > SIK Guide Code > Circuit_08

Copy and paste the following code into the Arduino IDE. Hit upload,
and see what happens!

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850



Page 50 of 128

language:cpp
/* SparkFun Inventor's Kit
Example sketch 08

POTENTIOMETER

 Measure the position of each potentiometer and map it to
 the red, green and blue values! Then write those values to t
he RGB LED.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

//create constants for the three analog input pins
const int redPot = 0;
const int greenPot = 1;
const int bluePot = 2;

//create constants for the three RGB pulse width pins
const int redPin = 5;
const int greenPin = 6;
const int bluePin = 9;

//create variables to store the red, green and blue values
int redVal;
int greenVal;
int blueVal;

void setup()
{
 //set the RGB pins as outputs
 pinMode(redPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
 pinMode(bluePin, OUTPUT);
}

void loop()
{
 //read the three analog input pins and store their value to
the color variables
 redVal = analogRead(redPot);
 greenVal = analogRead(greenPot);
 blueVal = analogRead(bluePot);

 //use the map() function to scale the 10 bit (0­1023) analo
g input value to an 8 bit
 //(0­255) PWM, or analogWrite() signal. Then store the new m
apped value back in the
 //color variable

 redVal = map(redVal, 0, 1023, 0, 255);
 greenVal = map(greenVal, 0, 1023, 0, 255);
 blueVal = map(blueVal, 0, 1023, 0, 255);

 // use the analogWrite() function to write the color values
to their respective
 // RGB pins.
 analogWrite(redPin, redVal);

Page 51 of 128

 analogWrite(greenPin, greenVal);
 analogWrite(bluePin, blueVal);
}

Code to Note

analogWrite(6,233); The analogWrite function is used to control the
PWM on pins 9, 6, 5 and 3 on the 101 board. You can write a value within
the range of 0 - 255 with 255 being completely on and 0 being completely
off.

lightLevel = map(lightLevel, 0, 1023, 0, 255);

Parameters

map(value, fromLow, fromHigh, toLow, toHigh)

value: the number to map

fromLow: the lower bound of the value’s current range

fromHigh: the upper bound of the value’s current range

toLow: the lower bound of the value’s target range

toHigh: the upper bound of the value’s target range

When we read an analog signal using analogRead() , it will be a number
from 0 to 1023. But when we want to drive a PWM pin using
analogWrite() , it wants a number from 0 to 255. We can “squeeze” the

larger range into the smaller range using the map() function. See Arduino’s
map reference page for more info.

What You Should See

You should see the RGB LED change colors when you turn the three
potentiometers. Each potentiometer will control a specific color (red, green
and blue). When all potentiometers are turned up to the maximum value,
you should get a white light from the RGB. When they are all turned down,
the RGB should be completely off. If not, see the Troubleshooting section
below.

Troubleshooting

Sporadically Working

This is most likely due to a slightly dodgy connection with the
potentiometers' pins. This can usually be conquered by holding the
potentiometer down or moving the potentiometer circuit somewhere else on
your breadboard.

Not Working

Make sure you haven’t accidentally connected the wiper (center pin), the
resistive element in the potentiometer, to digital pin 0 rather than analog pin
0. (the row of pins beneath the power pins).

Page 52 of 128

LED Not Lighting Up?

LEDs will only work in one direction. Double check your connections.

Experiment 9: Reading a Temperature
Sensor

Introduction

A temperature sensor is exactly what it sounds like – a sensor used to
measure ambient temperature. In this experiment you will read the raw
0-1023 value from the temperature sensor, calculate the actual
temperature, and then print it out over the serial monitor. Don’t know what
the serial monitor is? Go through this experiment to find out!

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 3x Jumper Wires
• 1x TMP36 Temperature Sensor

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

You will also need either an Arduino 101 OR Genuino 101 board.

Breadboard - Self-Adhesive
(White)
 PRT-12002

Temperature Sensor -
TMP36
 SEN-10988

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Page 53 of 128

Introducing the TMP36 Temperature Sensor

The TMP36 is a low-voltage, precision centigrade temperature sensor. It
provides a voltage output that is linearly proportional to the Celsius
temperature. It also doesn’t require any external calibration to provide
typical accuracies of ±1°C at +25°C and ±2°C over the −40°C to +125°C
temperature range. The output voltage can easily convert to temperature
using the scale factor of 10 mV/°C.

If you are looking at the flat face with text on it, the center pin is your signal
pin; the left-hand pin is supply voltage (3.3V in this tutorial), and the right-
hand pin connects to ground.

Pro Tip: The TMP36 looks a lot like a transistor. Put a dot of fingernail
polish on the top of your TMP36 so it’s easy to find.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Please note: The temperature sensor can only be connected to a
circuit in one direction. See below for the pin outs of the temperature
sensor - TMP36.

Wiring Diagram for the Experiment

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850



Page 54 of 128

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 9 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_09

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 55 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 07

TEMPERATURE SENSOR

 Use the "serial monitor" window to read a temperature senso
r.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.

*/

//analog input pin constant
const int tempPin = 0;

//raw reading variable
int tempVal;

//voltage variable
float volts;

//final temperature variables
float tempC;
float tempF;

void setup()
{
 // start the serial port at 9600 baud
 Serial.begin(9600);
}

void loop()
{
 //read the temp sensor and store it in tempVal
 tempVal = analogRead(tempPin);

 //print out the 10 value from analogRead
 Serial.print("TempVal = ");
 Serial.print(tempVal);

 //print a spacer
 Serial.print(" **** ");

 //converting that reading to voltage by multiplying the readi
ng by 3.3V (voltage of //the 101 board)
 volts = tempVal * 3.3;
 volts /= 1023.0;

 //print out the raw voltage over the serial port
 Serial.print("volts: ");
 Serial.print(volts, 3);

 //print out divider
 Serial.print(" **** ");

 //calculate temperature celsius from voltage

Page 56 of 128

 //equation found on the sensor spec.
 tempC = (volts ­ 0.5) * 100 ;

// print the celcius temperature over the serial port
Serial.print(" degrees C: ");
Serial.print(tempC);

//print spacer
 Serial.print(" **** ");

// Convert from celcius to fahrenheit
tempF = (tempC * 9.0 / 5.0) + 32.0;

//print the fahrenheit temperature over the serial port
Serial.print(" degrees F: ");
Serial.println(tempF);

//wait a bit before taking another reading
delay(1000);
}

Code to Note

Serial.begin(9600);

Before using the serial monitor, you must call Serial.begin() to initialize
it. 9600 is the “baud rate,” or communications speed. When two devices are
communicating with each other, both must be set to the same speed.

Serial.print(tempC);

The Serial.print() command is very smart. It can print out almost anything
you can throw at it, including variables of all types, quoted text (AKA
“strings”), etc. See http://arduino.cc/en/serial/print for more info.

Serial.println(tempF);

Serial.print() will print everything on the same line.

Serial.println() will move to the next line. By using both of these
commands together, you can create easy-to-read printouts of text and data.

What You Should See

You should be able to read the temperature your temperature sensor is
detecting on the serial monitor in the Arduino IDE. If it isn’t working, make
sure you have assembled the circuit correctly and verified and uploaded the
code to your board, or see the Troubleshooting section.

Example of what you should see in the Arduino IDE’s serial monitor:

TempVal = 223 volts: 0.719 degrees C: 21.94 **** degrees F: 71.48

TempVal = 224 volts: 0.723 degrees C: 22.26 **** degrees F: 72.06

TempVal = 224 volts: 0.723 degrees C: 22.26 **** degrees F: 72.06

TempVal = 224 volts: 0.723 degrees C: 22.26 **** degrees F: 72.06

TempVal = 224 volts: 0.723 degrees C: 22.26 **** degrees F: 72.06

TempVal = 224 volts: 0.723 degrees C: 22.26 **** degrees F: 72.06

TempVal = 223 volts: 0.719 degrees C: 21.94 **** degrees F: 71.48

TempVal = 223 volts: 0.719 degrees C: 21.94 **** degrees F: 71.48

Page 57 of 128

Troubleshooting

Nothing Seems to Happen

This program has no outward indication it is working. To see the results you
must open the Arduino IDE’s serial monitor (instructions on previous page).

Gibberish is Displayed

This happens because the serial monitor is receiving data at a different
speed than expected. To fix this, click the pull-down box that reads “***
baud” and change it to “9600 baud”.

Temperature Value is Unchanging

Try pinching the sensor with your fingers to heat it up or pressing a bag of
ice against it to cool it down.

Temperature Sensor is Really Hot!

You have wired it backward! Unplug your Arduino immediately, let the
sensor cool down, and double check your wiring. If you catch it soon
enough your sensor may not have been damaged and may still work.

Experiment 10: Driving a Servo Motor

Introduction

This experiment is your introduction to the servo motor, which is a smart
motor that you can tell to rotate to a specific angular location. You will
program it to rotate to a series of locations, then sweep across its full range
of motion, and then repeat.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x Servo
• 3x Jumper Wires

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

Page 58 of 128

You will also need either an Arduino 101 OR Genuino 101 board.

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorial:

• Pulse Width Modulation

Introducing the Servo Motor

Breadboard - Self-Adhesive
(White)
 PRT-12002

Servo - Generic (Sub-Micro
Size)
 ROB-09065

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 59 of 128

Unlike the action of most motors that continuously rotate, a servo motor can
rotate to and hold a specific angle until it is told to rotate to a different angle.
You can control the angle of the servo by sending it a PWM pulse train; the
PWM signal is mapped to a specific angle from 0 to 180 degrees.

Inside of the servo there is a gearbox connected to a motor that drives the
shaft. There is also a potentiometer that gives feedback on the rotational
position of the servo, which is then compared to the incoming PWM signal.
The servo adjusts accordingly to match the two signals.

In this experiment, the servo is powered through 5V on the red wire, ground
on the black wire, and the white wire is connected to a digital GPIO pin on
which you can use PWM (9, 6, 5, 3 on the 101 board).

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Connect 3x jumper wires to the female 3-pin header on the servo. This will
make it easier to breadboard the servo.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 10 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_10

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 60 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 10

SINGLE SERVO

 Sweep a servo back and forth through its full range of motio
n.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

//include the servo library
#include <Servo.h>

//create a servo object called servo1
Servo servo1;

void setup()
{
 //attach servo1 to pin 9 on the Arduino 101
 servo1.attach(9);
}

void loop()
{
 //create a local variable to store the servo's position.
 int position;

 // To control a servo, you give it the angle you'd like it
 // to turn to. Servos cannot turn a full 360 degrees, but yo
u
 // can tell it to move anywhere between 0 and 180 degrees.

 // Change position at full speed:

 // Tell servo to go to 90 degrees
 servo1.write(90);

 // Pause to get it time to move
 delay(1000);

 // Tell servo to go to 180 degrees
 servo1.write(180);

 // Pause to get it time to move
 delay(1000);

 // Tell servo to go to 0 degrees
 servo1.write(0);

 // Pause to get it time to move
 delay(1000);

 // Tell servo to go to 180 degrees, stepping by two degrees

Page 61 of 128

 for(position = 0; position < 180; position += 2)
 {
 // Move to next position
 servo1.write(position);
 // Short pause to allow it to move
 delay(20);
 }

 // Tell servo to go to 0 degrees, stepping by one degree
 for(position = 180; position >= 0; position ­= 1)
 {
 // Move to next position
 servo1.write(position);
 // Short pause to allow it to move
 delay(20);
 }
}

Code to Note

#include <Servo.h>

#include is a special “preprocessor” command that inserts a library (or
any other file) into your sketch. You can type this command yourself, or
choose an installed library from the “sketch / import library” menu.

Servo servo1;

When you use a library, you create what is called an object of that library
and name it. This object is a Servo library object, and it is named servo1. If
you were using multiple servos you would name each one in this way.

servo1.attach(9);

The servo library adds new commands that let you control a servo. To
prepare the Arduino to control a servo, you must first create a Servo
“object” for each servo (here we’ve named it “servo1”), and then “attach” it
to a digital pin (here we’re using pin 9). Think of this as the servo’s way of
calling a pinMode() function.

servo1.write(180);

The servos in this kit don’t spin all the way around, but they can be
commanded to move to a specific position. We use the servo library’s
write() command to move a servo to a specified number of degrees (0 to

180). Remember that the servo requires time to move, so give it a short
delay() if necessary.

What You Should See

You should see your servo motor move to various locations at several
speeds. If the motor doesn’t move, check your connections and make sure
you have verified and uploaded the code, or see the Troubleshooting
section.

Page 62 of 128

Troubleshooting

Servo Not Twisting

Even with colored wires it is still shockingly easy to plug a servo in
backward. This might be the case.

Still Not Working

A mistake we made a time or two was simply forgetting to connect the
power (red and black wires) to 5 volts and ground (GND).

Fits and Starts

If the servo begins moving, then twitches, and there’s a flashing light on
your 101, the power supply you are using is not quite up to the challenge.
Using a wall adapter instead of USB should solve this problem.

Experiment 11: Using a Transistor

Introduction

In the previous experiment, you got to work with a servo motor. Now, we
are going to tackle spinning a motor. This requires the use of a transistor,
which can switch a larger amount of current than the 101 board can. You
will use the transistor to turn a motor on and off – that’s right, a blinking
motor!

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x 48:1 Ratio Gearmotor
• 1x 100Ω Resistor
• 1x NPN Transistor
• 1x Diode 1N4148
• 7x Jumper Wires

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

Breadboard - Self-Adhesive
(White)
 PRT-12002

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Page 63 of 128

You will also need either an Arduino 101 OR Genuino 101 board.

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorials:

• Motors and Selecting the Right One
• Diodes
• Transistors
• Pulse Width Modulation

Introducing the Transistor

Hobby Gearmotor - 200
RPM (Pair)
 ROB-13302

Transistor - NPN (BC337)
 COM-13689

Zener Diode - 5.1V 1W
 COM-10301

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 64 of 128

The transistor can be described as a small electronic switch. It allows you
to control larger current loads with a smaller current without the risk of
burning up sensitive components. A transistor has three pins: a collector,
an emitter, and a base. Current can only flow into the transistor in one
direction – through the collector and out the emitter. To control the flow of
the current, you apply a small current to the base. This small current can
either be digital (on or off) or analog (through using PWM and the
analogWrite() function). The larger current will be mirrored from what the
smaller current is doing.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Please note: When you’re building the circuit be careful not to mix up the
transistor and the temperature sensor; they’re almost identical. Look for
“P2N2222A” on the body of the transistor.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

What is a Flyback Diode?

When the spinning motor is suddenly turned off, the magnetic field inside it
collapses, generating a voltage spike. This can damage the transistor. To
prevent this, we use a “flyback diode,” which diverts the voltage spike
“around” the transistor. Connect the side of the diode with the band
(cathode) to 5V. Connect the other side of the diode (anode) to the black
wire on the motor.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 11 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples >101 SIK Guide Code >
Circuit_11

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 65 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 11

SPINNING A MOTOR

 Use a transistor to spin a motor at different speeds.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

// constant pin for the transistor connected to the motor
const int motorPin = 9;

void setup()
{
 //set motorPin as OUTPUT
 pinMode(motorPin, OUTPUT);
}

void loop()
{
 // Here we've used comments to disable some of the examples.
 // To try different things, uncomment one of the following l
ines
 // and comment the other ones. See the functions below to le
arn
 // what they do and how they work.

 motorOnThenOff();
 // motorOnThenOffWithSpeed();
 // motorAcceleration();
}

// This function turns the motor on and off like the blinking
LED.
// Try different values to affect the timing.
void motorOnThenOff()
{
 // milliseconds to turn the motor on
 int onTime = 3000;
 // milliseconds to turn the motor off
 int offTime = 3000;

 // turn the motor on (full speed)
 digitalWrite(motorPin, HIGH);
 // delay for onTime milliseconds
 delay(onTime);
 // turn the motor off
 digitalWrite(motorPin, LOW);
 // delay for offTime milliseconds
 delay(offTime);
}

Page 66 of 128

// This function alternates between two speeds.
// Try different values to affect the timing and speed.
void motorOnThenOffWithSpeed()
{
 // between 0 (stopped) and 255 (full speed)
 int Speed1 = 200;
 // milliseconds for speed 1
 int Time1 = 3000;

 // between 0 (stopped) and 255 (full speed)
 int Speed2 = 50;
 // milliseconds to turn the motor off
 int Time2 = 3000;

 // turns the motor On
 analogWrite(motorPin, Speed1);
 // delay for onTime milliseconds
 delay(Time1);
 // turns the motor Off
 analogWrite(motorPin, Speed2);
 // delay for offTime milliseconds
 delay(Time2);
}

// This function slowly accelerates the motor to full speed,
// then back down to zero.
void motorAcceleration()
{
 // milliseconds between each speed step
 int speed;
 int delayTime = 20;

 // accelerate the motor
 for(speed = 0; speed <= 255; speed++)
 {
 // set the new speed
 analogWrite(motorPin,speed);
 // delay between speed steps
 delay(delayTime);
 }

 // decelerate the motor
 for(speed = 255; speed >= 0; speed­­)
 {
 // set the new speed
 analogWrite(motorPin,speed);
 // delay between speed steps
 delay(delayTime);
 }
}

What You Should See

The DC Motor should spin if you have assembled the circuit’s components
correctly, and also verified/uploaded the correct code. If your circuit is not
working, check the Troubleshooting section.

Page 67 of 128

Troubleshooting

Motor Not Spinning

If you sourced your own transistor, double check with the data sheet that
the pinout is compatible with the transistor you are using (many are
reversed).

Still No Luck

If you sourced your own motor, double check that it will work with 5 volts
and that it does not draw too much power.

Still Not Working

Sometimes the Arduino will disconnect from the computer. Try unplugging
and then replugging it into your USB port.

Experiment 12: Using the Motor Driver

Introduction

In the previous experiment you controlled a motor. But, it only spun in one
direction. How could you make it spin in both directions? With the SparkFun
Motor Driver! In this experiment you will use the motor driver to control the
motor’s direction and speed.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x SparkFun Motor Driver Board
• 1x 48:1 Geared Motor
• 12x Jumper Wires

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

Breadboard - Self-Adhesive
(White)
 PRT-12002

SparkFun Motor Driver -
Dual TB6612FNG (1A)
 ROB-09457

Page 68 of 128

You will also need either an Arduino 101 OR Genuino 101 board.

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorial:

• Bildr Tutorial

Introducing the SparkFun Motor Driver

The SparkFun Motor Driver is a small circuit board that has all of the
circuitry on it to make controlling motors easier. At the heart of the driver
board is an H-Bridge, which allows you to control both the direction and the
amount of an electrical current. You can think of it as a smart transistor that
allows you to change the direction of the current.

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Hobby Gearmotor - 200
RPM (Pair)
 ROB-13302

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 69 of 128

To switch the direction of the current, you use two pins to toggle pins on the
board either HIGH or LOW. If the two direction pins are both HIGH or LOW
at the same time, that causes the board to brake the motors. If one pin is
HIGH and the other is LOW, the motor spins in one direction. If you flip-flop
the states, the motor spins in the opposite direction. This board also has a
power-saving mode that uses a standby pin. To use the driver board, you
pull the standby pin HIGH. If you are not using the board and want to
conserve power, you can push the pin LOW, and the motors won’t run.

You can control up to two motors with a single driver board. The pin names
are printed on the bottom of the controller board.

PWMA PWM signal for controlling the speed of motor A

AIN2 Direction pin 2 for motor A

AIN1 Direction pin 1 for motor A

STBY Standby HIGH for board on, LOW for board off

BIN1 Direction pin for motor B

BIN2 Direction pin 2 for motor B

PWMB PWM signal for controlling the speed of motor B

GND Ground

VM Motor power source 5V to 14V

VCC Chip voltage (3.3V)

GND Ground

A01 Motor A connection

A02 Motor A connection

B02 Motor B Connection

B01 Motor B Connection

GND Ground

Note: All ground pins need to be connected to ground, and the STBY
pin cannot be floating, or not connected to ground or 3.3V. In this
experiment, we hardwired it to 3.3V.

Page 70 of 128

WARNING: Be sure to keep motor voltage (MV) isolated from other
circuitry! Accidentally using MV to power other circuitry may cause
irreparable damage to your 101 board!

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Note: We hardwire or connect the standby pin directly to 3.3V. If you
want to be able to enable/disable the motor controller in its entirety,
you can connect it to a digital GPIO pin and toggle it using a
digitalWrite().

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 12 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_12

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 71 of 128

language:cpp
/*
SparkFun Inventor's Kit for Arduino
Example sketch 12

SparkFun Motor Driver

Use the SparkFun Motor Driver to control the speed and directi
on of a motor

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

//define the two direction logic pins and the speed / PWM pin
const int DIR_A = 5;
const int DIR_B = 4;
const int PWM = 6;

void setup()
{
//set all pins as output
pinMode(DIR_A, OUTPUT);
pinMode(DIR_B, OUTPUT);
pinMode(PWM, OUTPUT);
}

void loop()
{
 //drive forward at full speed by pulling DIR_A High
 //and DIR_B low, while writing a full 255 to PWM to
 //control speed
 digitalWrite(DIR_A, HIGH);
 digitalWrite(DIR_B, LOW);
 analogWrite(PWM, 255);

 //wait 1 second
 delay(1000);

 //Brake the motor by pulling both direction pins to
 //the same state (in this case LOW). PWM doesn't matter
 //in a brake situation, but set as 0.
 digitalWrite(DIR_A, LOW);
 digitalWrite(DIR_B, LOW);
 analogWrite(PWM, 0);

 //wait 1 second
 delay(1000);

 //change direction to reverse by flipping the states
 //of the direction pins from their forward state
 digitalWrite(DIR_A, LOW);
 digitalWrite(DIR_B, HIGH);
 analogWrite(PWM, 150);

 //wait 1 second
 delay(1000);

 //Brake again
 digitalWrite(DIR_A, LOW);

Page 72 of 128

 digitalWrite(DIR_B, LOW);
 analogWrite(PWM, 0);

 //wait 1 second
 delay(1000);
 }

Code to Note

 language:cpp
 digitalWrite(DIR_A, HIGH);
 digitalWrite(DIR_B, LOW);
 analogWrite(PWM, 255);

The Motor Driver uses a control logic that works by pulling certain pins
HIGH or LOW (pins 4 and 5 in this case) to change the direction of the
motor’s rotation and then send a PWM signal to pin 6 to control the speed.
This chunk of code runs to motor in one direction at full speed.

language:cpp
digitalWrite(DIR_A, LOW);
digitalWrite(DIR_B, HIGH);
analogWrite(PWM, 150);

This chunk of code is similar, but changes the direction by flipping the
direction pin’s state and setting the PWM pin at a slower speed.

language:cpp
digitalWrite(DIR_A, LOW);
digitalWrite(DIR_B, LOW);
analogWrite(PWM, 0);

This final chunk of code demonstrates the logic for stopping or “braking” the
motor by pulling both direction pins to the same state. In this case we used
LOW, but both set to HIGH would produce the same results. In a brake, the
PWM level doesn’t matter. We set it to 0 as more of a formality than
anything. If not, see the Troubleshooting section below.

What You Should See

You should see the motor spin in one direction at full speed for a second,
then brake for a second, reverse direction and run at 150 PWM speed for a
second, brake, and then repeat.

Troubleshooting

Motor not Spinning

Make sure that you have the enable pin as well as the logic and PWM pins
wired correctly. It’s easy to make a wiring error, as the names of the pins of
the board are on the bottom.

Page 73 of 128

Double check that you have wired the standby pin to 3.3V! Without it, the IC
is in standby mode.

Motor Spinning in Only One Direction

Double check your code. You may not have inverted the logic pin’s state to
reverse the motor.

Experiment 13: Motor Driver with Inputs

Introduction

In Experiment 12 you used the Motor Driver board to control a motor’s
direction and speed. The issue is that you had to hard code the direction
and speed of your motor. Most applications that make use of a motor allow
the user to control the speed and direction of the motor, much as you would
your own car. In this experiment we will add two inputs and use them to
control the direction and speed of your motor.

Are you ready to get your motor running? Let’s go!

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x SPDT switch
• 1x 10K potentiometer
• 1x SparkFun Motor Driver Board
• 1x 48:1 ratio Gearmotor
• 20x Jumper Wires

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

Breadboard - Self-Adhesive
(White)
 PRT-12002

SparkFun Motor Driver -
Dual TB6612FNG (1A)
 ROB-09457

Trimpot 10K with Knob
 COM-09806

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

You will also need either an Arduino 101 OR Genuino 101 board.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 13 by accessing
the “SIK Guide Code” you downloaded and placed into your “Examples”
folder earlier.

SPDT Mini Power Switch
 COM-00102

Hobby Gearmotor - 200
RPM (Pair)
 ROB-13302

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850



Page 75 of 128

To open the code go to: File > Examples > SIK Guide Code > Circuit_13

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 76 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 13

SparkFun Motor Controller with Inputs

 Use the inputs to manually set the direction and speed of a
motor.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/
 //define the two direction logic pins and the speed / PWM pin
 const int DIR_A = 5;
 const int DIR_B = 4;
 const int PWM = 6;

 //define the input pins
 const int switchPin = 10;
 const int potPin = 0;

 void setup()
 {
 //set all pins as output
 pinMode(DIR_A, OUTPUT);
 pinMode(DIR_B, OUTPUT);
 pinMode(PWM, OUTPUT);
 //set the switchPin as INPUT
 pinMode(switchPin, INPUT);
 }

void loop()
{
//read the value from the potentiometer and divide
//it by 4 to get a 0­255 range. Store the value in
//the speed variable
int speed = analogRead(potPin) / 4;

 //read the value of the switch and store it in the
 //direction variable.

//if the value of direction is HIGH drive forward at
//a speed set by the speed variable, else drive reverse
//at a speed set by the speed variable.
if (digitalRead(switchPin) == HIGH)
{
 forward(speed);
}
else
 {
 reverse(speed);
 }
}

//create a custom function that defines moving forward
//the forward() function accepts one parameter and that is
//the speed at which you want to drive forward (0­255)

Page 77 of 128

 void forward(int spd)
 {
 //motor contoller direction pins set to forward
 digitalWrite(DIR_A, HIGH);
 digitalWrite(DIR_B, LOW);

 //write the speed by using the parameter of spd
 analogWrite(PWM, spd);
 }

//create a custom function that defines moving in reverse
//the reverse() function accepts one parameter and that is
//the speed at which you want to drive in reverse (0­255)
void reverse(int spd)
{
//set motor controller pins to reverse
digitalWrite(DIR_A, LOW);
digitalWrite(DIR_B, HIGH);

 //write the speed by using the parameter of spd
 analogWrite(PWM, spd);
 }

These big, scary functions take a single value as a parameter: speed. Each
function then accepts that value and applies it to the analogWrite() function
inside of the custom function. Custom functions are a great way to clean up
your code and also make it more modular and useful in other applications.
Watch out! You are halfway to writing your own library.

What You Should See

You should be able to control the motor’s direction by flipping the SPDT
switch and then the speed through the potentiometer. Go ahead and play
with both inputs to make sure they both work and the motor is responding
to those inputs.

Troubleshooting

Motor Only Spins in One Direction

Double check the wiring of your switch, but also double check your if()
statement to make sure there isn’t a semicolon after the statement.

Also, double check to make sure that you have the standby pin wired
correctly (to 3.3V).

Experiment 14: Using a Piezo Buzzer

Introduction

In this experiment, we will again bridge the gap between the digital world
and the analog world. We’ll be using a piezo buzzer that makes a small
“click” when you apply voltage to it (try it!). By itself that isn’t terribly

Page 78 of 128

exciting, but if you turn the voltage on and off hundreds of times a second,
the piezo buzzer will produce a tone. And if you string a bunch of tones
together, you’ve got music! This circuit and sketch will play a classic tune.
We’ll never let you down!

We have also added a button in series with the buzzer. Why? Because
every good noise maker needs a mute button! To hear the song being
played from your 101 board using the buzzer you need to press and hold
the button down. To mute the buzzer, just release the button.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x Piezo Buzzer
• 1x Push Button
• 5x Jumper Wires

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

You will also need either an Arduino 101 OR Genuino 101 board.

Breadboard - Self-Adhesive
(White)
 PRT-12002

Momentary Pushbutton
Switch - 12mm Square
 COM-09190

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Mini Speaker - PC Mount
12mm 2.048kHz
 COM-07950

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 79 of 128

Introducing the Piezo Buzzer

The buzzer is a small component with a piece of metal in it that moves
when you apply a voltage across it. This motion causes a small sound, or
“click.” If you turn the voltage on and off fast enough, you get different
beeps, squeals, chirps and buzzes. You will use PWM to control the speed
of turning the piezo on and off – and, in turn, the audio frequency coming
out of the buzzer. Adjusting the PWM enables you to get legitimate notes
out of the buzzer.

If you flip the buzzer over and look at the bottom, you will see that one pin
has a (+) next to it. That pin gets connected to a signal from a PWM pin.
The other pin should be connected to ground.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment



Page 80 of 128

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 14 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > SIK Guide Code > Circuit_14

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 81 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 14

BUZZER

 Use the buzzer to play a song!

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
(This sketch was originally developed by D. Cuartielles for K
3)
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.

*/

/*
This sketch uses the buzzer to play songs.
The Arduino's tone() command will play notes of a given freque
ncy.
We'll provide a function that takes in note characters (a­g),
and returns the corresponding frequency from this table:

 note frequency
 c 262 Hz
 d 294 Hz
 e 330 Hz
 f 349 Hz
 g 392 Hz
 a 440 Hz
 b 494 Hz
 C 523 Hz

For more information, see http://arduino.cc/en/Tutorial/Tone
*/

const int buzzerPin = 9;

// We'll set up an array with the notes we want to play
// change these values to make different songs!

// Length must equal the total number of notes and spaces

const int songLength = 18;

// Notes is an array of text characters corresponding to the n
otes
// in your song. A space represents a rest (no tone)

char notes[] = "cdfda ag cdfdg gf "; // a space represents a r
est

// Beats is an array of values for each note and rest.
// A "1" represents a quarter­note, 2 a half­note, etc.
// Don't forget that the rests (spaces) need a length as well.

int beats[] = {1,1,1,1,1,1,4,4,2,1,1,1,1,1,1,4,4,2};

// The tempo is how fast to play the song.
// To make the song play faster, decrease this value.

Page 82 of 128

int tempo = 150;

void setup()
{
 pinMode(buzzerPin, OUTPUT);
}

void loop()
{
 int i, duration;

 for (i = 0; i < songLength; i++) // step through the song ar
rays
 {
 duration = beats[i] * tempo; // length of note/rest in ms

 if (notes[i] == ' ') // is this a rest?
 {
 delay(duration); // then pause for a moment
 }
 else // otherwise, play the note
 {
 tone(buzzerPin, frequency(notes[i]), duration);
 delay(duration); // wait for tone to finish
 }
 delay(tempo/10); // brief pause between notes
 }

 // We only want to play the song once, so we'll pause foreve
r:
 while(true){}
 // If you'd like your song to play over and over,
 // remove the above statement
}

int frequency(char note)
{
 // This function takes a note character (a­g), and returns t
he
 // corresponding frequency in Hz for the tone() function.

 int i;
 const int numNotes = 8; // number of notes we're storing

 // The following arrays hold the note characters and their
 // corresponding frequencies. The last "C" note is uppercase
 // to separate it from the first lowercase "c". If you want
to
 // add more notes, you'll need to use unique characters.

 // For the "char" (character) type, we put single characters
 // in single quotes.

 char names[] = { 'c', 'd', 'e', 'f', 'g', 'a', 'b', 'C' };
 int frequencies[] = {262, 294, 330, 349, 392, 440, 494, 52
3};

 // Now we'll search through the letters in the array, and if
 // we find it, we'll return the frequency for that note.

 for (i = 0; i < numNotes; i++) // Step through the notes

Page 83 of 128

 {
 if (names[i] == note) // Is this the one?
 {
 return(frequencies[i]); // Yes! Return the frequency
 }
 }
 return(0); // We looked through everything and didn't find
it,
 // but we still need to return a value, so retur
n 0.
}

Code to Note

char notes[] = "cdfda ag cdfdg gf ";

char names[] = {'c','d','e','f','g','a','b','C'};

Up until now we’ve been working solely with numerical data, but the
Arduino can also work with text. Characters (single, printable, letters,
numbers and other symbols) have their own type, called “char.” When you
have an array of characters, it can be defined between double-quotes (also
called a “string”), OR as a list of single-quoted characters.

tone(pin, frequency, duration);

One of Arduino’s many useful built-in commands is the tone() function.
This function drives an output pin at a certain frequency, making it perfect
for driving buzzers and speakers. If you give it a duration (in milliseconds),
it will play the tone, then stop. If you don’t give it a duration, it will keep
playing the tone forever (but you can stop it with another function,
noTone()).

What You Should See

What you should see – well, nothing! What you should hear – well, nothing
to start with! But you should be able to hear a song if you press and hold
the button down as soon as the sketch finishes the upload. If you catch the
song halfway through or you feel as though it isn’t playing, press the reset
button and hold down the press button.

If it isn’t working, make sure you have assembled the circuit correctly and
verified and uploaded the code to your board, or see the Troubleshooting
section.

Troubleshooting

No Sound

Given the size and shape of the piezo buzzer it is easy to miss the right
holes on the breadboard. Try double checking its placement.

Also, double check to make sure the push button is wired correctly. If you
miswired it, then the circuit will never be completed whether you press the
button or not.

Page 84 of 128

It Seems to Be Only Playing Part of the Song

You may only catch part of the song by the time you press and hold the
button. To start the song over again press the MASTER RESET button on
the 101 board while holding the mute button down.

Feeling Let Down and Deserted

The code is written so you can easily add your own songs. Go forth and
rock on!

Experiment 15: Using the Sound
Detector Board

Introduction

You have used a couple of different analog inputs in previous experiments.
In this experiment you will look at sound as an input and use the SparkFun
Sound Detector Board. You will use the Envelope output on the board to
measure how loud it is in the room, and then use some snazzy code called
a switch case to change the color and RGB accordingly.

We call this the fun-o-meter! If things get out of control, you’ll see red!

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 3x 100Ω Resistor
• 1x Common Cathode RGB LED
• 1x SparkFun Sound Detector Board
• 9x Jumper Wires

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

Breadboard - Self-Adhesive
(White)
 PRT-12002

SparkFun Sound Detector
 SEN-12642

LED - RGB Clear Common
Cathode
 COM-00105

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Page 85 of 128

You will also need either an Arduino 101 OR Genuino 101 board.

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorials:

• Sound Detector Hookup Guide
• Digital Logic

Introducing the Sound Detector Board

The Sound Detector Board is a nifty little sensor! It is a microphone circuit
that saves you quite a bit of wiring. Once you attach the board to power
(3.3V) on the VCC pin and ground to GND pin, there are three options for
different signals to use as inputs for the 101.

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 86 of 128

The first signal, GATE, is a digital signal that turns on when the ambient
sound passes a certain threshold. GATE also has an LED wired to it on the
Sound Detector. Once you power it up correctly and make noise, you will
see the red LED light up when it is “loud” and turn off when it is “quiet.”

The second signal, ENVELOPE, scales the amplitude (how loud it is) to a
0-1023 10-bit value. In a quiet living room this level registers at about 10.

The final signal is the raw AUDIO signal. In a quiet room, the signal levels
out around 512 and will produce a waveform curve based on the frequency
of the ambient sound. The raw AUDIO signal would be something to use if
you were looking to do some audio processing that is beyond the scope of
this guide. To learn more about the specifics of the Sound Detector Board,
please check out our hookup guide for it.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 15 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples >101 SIK Guide Code >
Circuit_15

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 87 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 15

SOUND DETECTOR

Use the sound detector to measure the volume of the surroundin
g area and change the
color of an RGB based on that volume.

 //pin variables
const int redPin = 5;
const int greenPin = 6;
const int bluePin = 9;
const int soundPin = 0;

//variables for storing raw sound and scaled value
int sound;
int scale;

void setup()
{
 //start the serial port a@ 9600bps
 Serial.begin(9600);
 //set RGB pins to OUTPUT
 pinMode(redPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
 pinMode(bluePin, OUTPUT);
}

void loop()
{
 //read and store the audio from Envelope pin
 sound = analogRead(soundPin);
 //map sound which in a quiet room a clap is 300
 //from 0 to 3 to be used with switch case
 scale = map(sound, 0, 300, 0, 3);

 //print values over the serial port for debugging
 Serial.print(sound);
 Serial.print(" ");
 Serial.println(scale);

 //switch case on scaled value
switch (scale)
{
//if 0 RGB = Blue
case 0:
 digitalWrite(redPin, LOW);
 digitalWrite(greenPin, LOW);
 digitalWrite(bluePin, HIGH);
 break;
//if 1 RGB = Green
case 1:
 digitalWrite(redPin, LOW);
 digitalWrite(greenPin, HIGH);
 digitalWrite(bluePin, LOW);
 break;
//if 2 RGB = Yellow
case 2:
 digitalWrite(redPin, HIGH);
 digitalWrite(greenPin, HIGH);
 digitalWrite(bluePin, LOW);

Page 88 of 128

 break;
//if 3 RGB = Red
case 3:
 digitalWrite(redPin, HIGH);
 digitalWrite(greenPin, LOW);
 digitalWrite(bluePin, LOW);
 break;
//default off
default:
 digitalWrite(redPin, LOW);
 digitalWrite(greenPin, LOW);
 digitalWrite(bluePin, LOW);
 break;
 }
}

Code to Note

scale = map(sound,0,300,0,3

This may seem like an odd mapping of values. This is a setup for using the
switch case, and we need to map a large set of values down to three to four
choices. The map function works both ways, but it comes in most handy to
build ranges of values paired with a switch case.

switch(value)
{
 case(0):
 //do something
 break;
 case(1):
 //do something else
 break;
 default:
 //do another thing
 break;
}

Switch case comes in really handy when you think you are going to need a
really long chain of if else() statements where you are trying to do
something based on a range of values. Switch() looks at a variable and
then looks for its match within a list of cases. If the match is not available it
uses a default setting. Each case also has its own break command, which
allows Arduino to escape out of the switch case and continue on its way.

What You Should See

Once the code is uploaded and the sketch starts, the RGB should turn blue.
Make a lot of noise, and the RGB should change from blue to green and
then to yellow … if you get really loud it may turn red! Don’t worry; we won’t
call the cops!

Page 89 of 128

Troubleshooting

Not Getting Yellow or Red

Open up your serial monitor to do some debugging. Check your quiet value
and then make a bunch of noise. Adjust your map function to make sure
your range is the same.

Odd Values Coming from the Sound Detector

Make sure you have the sound detector board hooked up to 3.3V and you
are reading the Envelope pin.

Still Not Working

Sometimes the Arduino 101 board will disconnect from the computer. Try
unplugging and then replugging it into your USB port.

Experiment 16: Using a Shift Register

Introduction

Now we are going to step into the world of raw ICs (integrated circuits). In
this experiment, you’ll learn all about using a shift register. The shift register
will give your 101 board an additional eight outputs, using only three pins
on your board. For this experiment, you’ll practice by using the shift register
to control eight LEDs. That’s right – two more LEDs than Experiment 4!

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 8x LEDs
• 8x 330Ω Resistors
• 1x Shift Register 8-Bit - 74HC595
• 19x Jumper Wires

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

Breadboard - Self-Adhesive
(White)
 PRT-12002

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Page 90 of 128

You will also need either an Arduino 101 OR Genuino 101 board.

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorials:

• Shift Registers
• Integrated Circuits

Introducing the Shift Register

LED - Basic Red 5mm
 COM-09590

Shift Register 8-Bit -
SN74HC595
 COM-13699

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 91 of 128

The shift register is an Integrated Circuit (IC). ICs are tiny, plastic-sealed
packages of popular and often used circuits. ICs act as single components
that perform a specific job function and simplify what used to be time- and
space-consuming circuit design.

The shift register, in essence, allows you to control up to eight outputs while
only using three pins on your 101 board. It enables you to control more
outputs with fewer pins compared to Experiment 4, where you used six pins
for six individual outputs.

Think of it this way: the data going into the shift register is like a train of
eight different train cars. If a car is full of cargo, the data it represents is a 1.
If the train car is empty, the data it represents is a 0. When the whole train
has entered the shift register, it gets broken up, and each car gets placed
on its own track. These tracks can be translated to the eight output pins of
the shift register. If the car is full (1) the pin that it is on is pulled HIGH; if the
car is empty (0) the pin is pulled LOW. If you constantly send train after
train into the shift register, you can animate LEDs or control something like
a 7-segment display to count down or even a whole lot of motors turning at
different times. All of this happens just by sending the shift register trains
with different patterns of 1s and 0s.

To learn more about trains shift registers, check out our Shift Register
Tutorial.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 16 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples >101 SIK Guide Code >
Circuit_16

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 92 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 16

SHIFT REGISTER

 Use a shift register to turn three pins into eight (or mor
e!)
 outputs

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

// Pin definitions:
// The 74HC595 uses a type of serial connection called SPI
// (Serial Peripheral Interface) that requires three pins:

int datapin = 2;
int clockpin = 3;
int latchpin = 4;

// We'll also declare a global variable for the data we're
// sending to the shift register:

byte data = 0;

void setup()
{
 // Set the three SPI pins to be outputs:

 pinMode(datapin, OUTPUT);
 pinMode(clockpin, OUTPUT);
 pinMode(latchpin, OUTPUT);
}

void loop()
{
 // We're going to use the same functions we played with back
 // in circuit 04, "Multiple LEDs," we've just replaced
 // digitalWrite() with a new function called shiftWrite()
 // (see below). We also have a new function that demonstrate
s
 // binary counting.

 // To try the different functions below, uncomment the one
 // you want to run, and comment out the remaining ones to
 // disable them from running.

 oneAfterAnother(); // All on, all off

 //oneOnAtATime(); // Scroll down the line

 //pingPong(); // Like above, but back and forth

 //randomLED(); // Blink random LEDs

Page 93 of 128

 //marquee();

 //binaryCount(); // Bit patterns from 0 to 255
}

void shiftWrite(int desiredPin, boolean desiredState)

// This function lets you make the shift register outputs
// HIGH or LOW in exactly the same way that you use digitalWri
te().

// Like digitalWrite(), this function takes two parameters:

// "desiredPin" is the shift register output pin
// you want to affect (0­7)

// "desiredState" is whether you want that output
// to be HIGH or LOW

// Inside the Arduino, numbers are stored as arrays of "bits,"
// each of which is a single 1 or 0 value. Because a "byte" ty
pe
// is also eight bits, we'll use a byte (which we named "data"
// at the top of this sketch) to send data to the shift regist
er.
// If a bit in the byte is "1," the output will be HIGH. If th
e bit
// is "0," the output will be LOW.

// To turn the individual bits in "data" on and off, we'll use
// a new Arduino commands called bitWrite(), which can make
// individual bits in a number 1 or 0.
{
 // First we'll alter the global variable "data," changing th
e
 // desired bit to 1 or 0:

 bitWrite(data,desiredPin,desiredState);

 // Now we'll actually send that data to the shift register.
 // The shiftOut() function does all the hard work of
 // manipulating the data and clock pins to move the data
 // into the shift register:

 shiftOut(datapin, clockpin, MSBFIRST, data);

 // Once the data is in the shift register, we still need to
 // make it appear at the outputs. We'll toggle the state of
 // the latchPin, which will signal the shift register to "la
tch"
 // the data to the outputs. (Latch activates on the high­to
 // ­low transition).

 digitalWrite(latchpin, HIGH);
 digitalWrite(latchpin, LOW);
}

/*
oneAfterAnother()

This function will light one LED, delay for delayTime, then li
ght

Page 94 of 128

the next LED, and repeat until all the LEDs are on. It will th
en
turn them off in the reverse order.
*/

void oneAfterAnother()
{
 int index;
 int delayTime = 100; // Time (milliseconds) to pause betwee
n LEDs
 // Make this smaller for faster switchi
ng

 // Turn all the LEDs on:

 // This for() loop will step index from 0 to 7
 // (putting "++" after a variable means add one to it)
 // and will then use digitalWrite() to turn that LED on.

 for(index = 0; index <= 7; index++)
 {
 shiftWrite(index, HIGH);
 delay(delayTime);
 }

 // Turn all the LEDs off:

 // This for() loop will step index from 7 to 0
 // (putting "­­" after a variable means subtract one from i
t)
 // and will then use digitalWrite() to turn that LED off.

 for(index = 7; index >= 0; index­­)
 {
 shiftWrite(index, LOW);
 delay(delayTime);
 }
}

/*
oneOnAtATime()

This function will step through the LEDs, lighting one at at t
ime.
*/

void oneOnAtATime()
{
 int index;
 int delayTime = 100; // Time (milliseconds) to pause betwee
n LEDs
 // Make this smaller for faster switchi
ng

 // step through the LEDs, from 0 to 7

 for(index = 0; index <= 7; index++)
 {
 shiftWrite(index, HIGH); // turn LED on
 delay(delayTime); // pause to slow down the sequence
 shiftWrite(index, LOW); // turn LED off
 }
}

Page 95 of 128

/*
pingPong()

This function will step through the LEDs, lighting one at at t
ime,
in both directions.
*/

void pingPong()
{
 int index;
 int delayTime = 100; // time (milliseconds) to pause betwee
n LEDs
 // make this smaller for faster switchi
ng

 // step through the LEDs, from 0 to 7

 for(index = 0; index <= 7; index++)
 {
 shiftWrite(index, HIGH); // turn LED on
 delay(delayTime); // pause to slow down the sequence
 shiftWrite(index, LOW); // turn LED off
 }

 // step through the LEDs, from 7 to 0

 for(index = 7; index >= 0; index­­)
 {
 shiftWrite(index, HIGH); // turn LED on
 delay(delayTime); // pause to slow down the sequence
 shiftWrite(index, LOW); // turn LED off
 }
}

/*
randomLED()

This function will turn on random LEDs. Can you modify it so i
t
also lights them for random times?
*/

void randomLED()
{
 int index;
 int delayTime = 100; // time (milliseconds) to pause betwee
n LEDs
 // make this smaller for faster switchi
ng

 // The random() function will return a semi­random number ea
ch
 // time it is called. See http://arduino.cc/en/Reference/Ran
dom
 // for tips on how to make random() more random.

 index = random(8); // pick a random number between 0 and
7

 shiftWrite(index, HIGH); // turn LED on
 delay(delayTime); // pause to slow down the sequence
 shiftWrite(index, LOW); // turn LED off

Page 96 of 128

}

/*
marquee()

This function will mimic "chase lights" like those around sign
s.
*/

void marquee()
{
 int index;
 int delayTime = 200; // Time (milliseconds) to pause betwee
n LEDs
 // Make this smaller for faster switchi
ng

 // Step through the first four LEDs
 // (We'll light up one in the lower 4 and one in the upper
4)

 for(index = 0; index <= 3; index++)
 {
 shiftWrite(index, HIGH); // Turn a LED on
 shiftWrite(index+4, HIGH); // Skip four, and turn that LE
D on
 delay(delayTime); // Pause to slow down the sequence
 shiftWrite(index, LOW); // Turn both LEDs off
 shiftWrite(index+4, LOW);
 }
}

/*
binaryCount()

Numbers are stored internally in the Arduino as arrays of "bit
s,"
each of which is a 1 or 0. Just like the base­10 numbers we us
e
every day, The position of the bit affects the magnitude of it
s
contribution to the total number:

Bit position Contribution
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128

To build any number from 0 to 255 from the above 8 bits, just
select the contributions you need to make. The bits will then
be
1 if you use that contribution, and 0 if you don't.

This function will increment the "data" variable from 0 to 255
and repeat. When we send this value to the shift register and
LEDs,
you can see the on­off pattern of the eight bits that make up
the

Page 97 of 128

byte. See http://www.arduino.cc/playground/Code/BitMath for mo
re
information on binary numbers.
*/

void binaryCount()
{
 int delayTime = 1000; // time (milliseconds) to pause betwee
n LEDs
 // make this smaller for faster switch
ing

 // Send the data byte to the shift register:

 shiftOut(datapin, clockpin, MSBFIRST, data);

 // Toggle the latch pin to make the data appear at the outpu
ts:

 digitalWrite(latchpin, HIGH);
 digitalWrite(latchpin, LOW);

 // Add one to data, and repeat!
 // (Because a byte type can only store numbers from 0 to 25
5,
 // if we add more than that, it will "roll around" back to 0
 // and start over).

 data++;

 // Delay so you can see what's going on:

 delay(delayTime);
}

Code to Note

shiftOut(datapin, clockpin, MSBFIRST, data);

You’ll communicate with the shift register (and a lot of other parts) using the
SPI. This interface uses a data line and a separate clock line that work
together to move data in or out of the 101 board at high speed. The
MSBFIRST parameter specifies the order in which to send the individual
bits; in this case we’re sending the Most Significant Bit first.

bitWrite(data, desiredPin, desiredState);

Bits are the smallest possible piece of memory in a computer; each one can
store either a “1” or a “0.” Larger numbers are stored as arrays of bits.
Sometimes we want to manipulate these bits directly; for example, now
when we’re sending eight bits to the shift register and we want to make
them 1 or 0 to turn the LEDs on or off. The Arduino has several commands,
such as bitWrite() , that make this easy to do.

What You Should See

You should see the LEDs light up similarly to Experiment 4 (but this time,
you’re using a shift register). If they don’t, make sure you have assembled
the circuit correctly and verified and uploaded the code to your board. See
the Troubleshooting section.

Page 98 of 128

Troubleshooting

The Arduino’s Power LED Goes Out

This happened to us a couple of times. It happens when the chip is inserted
backward. If you fix it quickly, nothing will break.

Not Quite Working

Sorry to sound like a broken record, but it is probably something as simple
as a crossed wire.

Frustration

Shoot us an email; this circuit is both simple and complex at the same time.
We want to hear about problems you have so we can address them in
future editions: techsupport@sparkfun.com

Experiment 17: Using an LCD

Introduction

In this experiment, you will learn how to use an LCD. An LCD (Liquid
Crystal Display) is a simple screen that can display commands, bits of
information, or readings from your sensor – all depending on how you
program your board. In this circuit, you’ll learn the basics of incorporating
an LCD into your project.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x Potentiometer
• 1x 3.3V LCD
• 16x Jumper Wires

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

Breadboard - Self-Adhesive
(White)
 PRT-12002

Trimpot 10K with Knob
 COM-09806

Page 99 of 128

You will also need either an Arduino 101 OR Genuino 101 board.

Introducing the LCD screen

The 101 SIK includes a Liquid Crystal Display (LCD) screen. This screen is
similar to one that you may find in your microwave, on your dashboard in
your car, or if you are old enough to remember, a Speak and Spell). LCD
screens are a great way to display data or information from your 101 board
without having to have it connected to your laptop.

This LCD screen has a total of 32 possible character spaces arranged in a
grid consisting of two rows of 16 characters. The LCD is controlled through
a library that makes using it with the 101 board much easier. The wiring
looks a little overwhelming, but it is a worthwhile challenge.

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Basic 16x2 Character LCD -
White on Black 3.3V
 LCD-09052

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 100 of 128

Pro Tip: When wiring the LCD screen, start from one side of the LCD
pins and work in toward the center. Once you reach an unpopulated
pin, switch to the other side and repeat the process. This method will
help prevent accidentally missing a pin or incorrectly wiring it up.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 17 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_17

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 101 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 17

LIQUID CRYSTAL DISPLAY (LCD)

 This sketch will show you how to connect an LCD to your Ardu
ino
 and display any data you wish.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit https://www.sparkfun.com/products/12060 for SIK informat
ion.
Visit http://www.arduino.cc to learn more about Arduino.
*/

// Load the LiquidCrystal library, which will give us
// commands to interface to the LCD:

#include <LiquidCrystal.h>

// Initialize the library with the pins we're using.
// (Note that you can use different pins if needed.)
// See http://arduino.cc/en/Reference/LiquidCrystal
// for more information:

LiquidCrystal lcd(12,11,5,4,3,2);

void setup()
{
 // The LiquidCrystal library can be used with many different
 // LCD sizes. We're using one that's 2 lines of 16 character
s,
 // so we'll inform the library of that:

 lcd.begin(16, 2);

 // Data sent to the display will stay there until it's
 // overwritten or power is removed. This can be a problem
 // when you upload a new sketch to the Arduino but old data
 // remains on the display. Let's clear the LCD using the
 // clear() command from the LiquidCrystal library:

 lcd.clear();

 // Now we'll display a message on the LCD!

 // Just as with the Arduino IDE, there's a cursor that
 // determines where the data you type will appear. By defaul
t,
 // this cursor is invisible, though you can make it visible
 // with other library commands if you wish.

 // When the display powers up, the invisible cursor starts
 // on the top row and first column.

 lcd.print("hello, world!");

 // Adjusting the contrast (IMPORTANT!)

 // When you run the sketch for the first time, there's a

Page 102 of 128

 // very good chance you won't see anything on the LCD displa
y.
 // This is because the contrast likely won't be set correctl
y.
 // Don't worry, it's easy to set, and once you set it you wo
n't
 // need to change it again.

 // Run the sketch, then turn the potentiometer until you can
 // clearly see the "hello, world!" text. If you still can't
 // see anything, check all of your connections, and ensure t
hat
 // the sketch was successfully uploaded to the Arduino.
}

void loop()
{
 // You can move the invisible cursor to any location on the
 // LCD before sending data. Counting starts from 0, so the t
op
 // line is line 0 and the bottom line is line 1. Columns ran
ge
 // from 0 on the left side, to 15 on the right.

 // In additon to the "hello, world!" printed above, let's
 // display a running count of the seconds since the Arduino
 // was last reset. Note that the data you send to the displa
y
 // will stay there unless you erase it by overwriting it or
 // sending an lcd.clear() command.

 // Here we'll set the invisible cursor to the first column
 // (column 0) of the second line (line 1):

 lcd.setCursor(0,1);

 // Now we'll print the number of seconds (millis() / 1000)
 // since the Arduino last reset:

 lcd.print(millis()/1000);

 // TIP: Since the numeric data we're sending is always growi
ng
 // in length, new values will always overwrite the previous
ones.
 // However, if you want to display varying or decreasing num
bers
 // like a countdown, you'll find that the display will leave
 // "orphan" characters when the new value is shorter than th
e
 // old one.

 // To prevent this, you'll need to erase the old number befo
re
 // writing the new one. You can do this by overwriting the
 // last number with spaces. If you erase the old number and
 // immediately write the new one, the momentary erase won't
 // be noticeable. Here's a typical sequence of code:

 // lcd.setCursor(0,1); // Set the cursor to the position
 // lcd.print(" "); // Erase the largest possible numbe
r
 // lcd.setCursor(0,1); // Reset the cursor to the origina
l position
 // lcd.print(millis()/1000); // Print our value

Page 103 of 128

 // NEXT STEPS:

 // Now you know the basics of hooking up an LCD to the Ardui
no,
 // and sending text and numeric data to the display!

 // The LCD library has many commands for turning the
 // cursor on and off, scrolling the screen, etc. See:
 // http://arduino.cc/en/Reference/LiquidCrystal
 // for more information.

 // Arduino also comes with a number of built­in examples
 // showing off the features of the LiquidCrystal library.
 // These are locted in the file/examples/LiquidCrystal menu.

 // Have fun, and let us know what you create!
 // Your friends at SparkFun.
}

Code to Note

#include <LiquidCrystal.h>

This bit of code tells your Arduino IDE to include the library for a simple
LCD display. Without it, none of the commands will work, so make sure you
include it!

lcd.print(“hello, world!”);

This is the first time you’ll fire something up on your screen. You may need
to adjust the contrast to make it visible. Twist the potentiometer until you
can clearly see the text.

lcd.clear();

Yep, you guessed it. This method is used to clear whatever data is printed
to the LCD.

lcd.setCursor(0,1);

If you look closely you will notice that each character has a little box around
it and these boxes are in a 2x16 grid. The first number in this method is the
column (zero based counting … gotta get used to that!), and the second
number is the row. So this value of 0,1 is the first column, second row.

What You Should See

Initially, you should see the words “hello, world!” pop up on your LCD.
Remember you can adjust the contrast using the potentiometer if you can’t
make out the words clearly. If you have any issues, make sure your code is
correct and double-check your connections. See also the Troubleshooting
section below.

Page 104 of 128

Troubleshooting

The Screen is Blank or Completely Lit

Fiddle with the contrast by twisting the potentiometer. If it’s incorrectly
adjusted, you won’t be able to read the text.

Not Working at All

Double check the code, specifically that you include the LCD library.

Screen is Flickering

Double check your connections to your breadboard and 101 board.

Experiment 18: Reading the On-Board
Accelerometer

Introduction

In Experiment 13, you played around with using different inputs to control a
motor’s speed and direction. In this experiment you will do something
similar but use the on-board accelerometer on the Arduino 101 board as an
input.

The accelerometer measures gravitational forces being applied to the
sensor in different directions. You can extrapolate a lot of information from
accelerometer data if it is being moved around. But it is also handy for
figuring out which way is down when it is sitting still! Earth’s gravity is an
ever-present force that can be measured by the accelerometer. We will use
it in this way to determine the orientation of your Arduino 101 board, and
from there have your motor drive forward, backward or do nothing. Lets get
to it!

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x SparkFun Motor Driver
• 1x 42:1 Hobby Gearmotor
• 13x Jumper Wires

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

Breadboard - Self-Adhesive
(White)
 PRT-12002

SparkFun Motor Driver -
Dual TB6612FNG (1A)
 ROB-09457

Page 105 of 128

You will also need either an Arduino 101 OR Genuino 101 board.

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorials:

• Motors and Selecting the Right One
• Acceleromter Basics
• Orientation Visualizer
• CurieIMU Library

Introducing the Accelerometer

Accelerometers are devices that measure acceleration, which is the rate of
change of the velocity of an object. They measure in meters per second
squared (m/s2) or in G-forces (g). A single G-force for us here on planet
Earth is equivalent to 9.8 m/s2, but this does vary slightly with elevation
(and will be a different value on different planets due to variations in
gravitational pull). Accelerometers are useful for sensing vibrations in
systems or for orientation applications.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Hobby Gearmotor - 200
RPM (Pair)
 ROB-13302

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850



Page 106 of 128

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 18 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_18

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 107 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 18

Controlling a Motor Using an Accelerometer

 Use the on­board accelerometer of the 101 board as an input
to control
 a motor based on its orientation in space. If you tilt the 1
01 to the left,
 the motor spins in one direction; tilted to the right, it sp
ins the opposite direction; and if it
 is flat, the motor stops.

This sketch was written by SparkFun Electronics, and based on
the Orientation example
in the CurieIMU Library Examples
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

#include "CurieIMU.h"

const int DIR_A = 4;
const int DIR_B = 5;
const int PWM = 6;

// previous orientation (for comparison). Start at (­1) to sta
rt with

void setup()
{
 //set motor control pins to OUTPUT
pinMode(DIR_A, OUTPUT);
pinMode(DIR_B, OUTPUT);
pinMode(PWM, OUTPUT);

 // Start the acceleromter
 CurieIMU.begin();

// Set the accelerometer range to 2G
CurieIMU.setAccelerometerRange(2);
}

void loop()
{
 // read accelerometer:
 int x = CurieIMU.readAccelerometer(X_AXIS);
 int y = CurieIMU.readAccelerometer(Y_AXIS);
 int z = CurieIMU.readAccelerometer(Z_AXIS);

 // calculate the absolute values, to determine the largest
 int absX = abs(x);
 int absY = abs(y);
 int absZ = abs(z);

if ((absZ > absX) && (absZ > absY))
{
 // base orientation on Z
 if (z > 0)

Page 108 of 128

 {
 brake();
 }
}

 //else if Y is greater than X and Z its on edge
 else if ((absY > absX) && (absY > absZ))
 {
 // if Y is positive orientation (digital pins up)and is set
to 1
 if (y > 0)
 {
 forward();
 }
 //the Y is in the negative orientation (analog pins up) and
is set to 2
 else
 {
 reverse();
 }
}
}
//custom function for driving the motor forward
void forward()
{
 digitalWrite(DIR_A, HIGH);
 digitalWrite(DIR_B, LOW);
 digitalWrite(PWM, HIGH);
}

//custom function for driving the motor in reverse
void reverse()
{
 digitalWrite(DIR_A, LOW);
 digitalWrite(DIR_B, HIGH);
 digitalWrite(PWM, HIGH);
}

//custom function for braking the motor
void brake()
{
 digitalWrite(DIR_A, LOW);
 digitalWrite(DIR_B, LOW);
 digitalWrite(PWM, LOW);
}

Code to Note

#include "CurieIMU.h"

The Arduino’s serial port can be used to receive as well as send data.
Because data could arrive at any time, the Arduino 101 board stores, or
“buffers,” data coming into the port until you’re ready to use it. The
Serial.available() command returns the number of characters that the

port has received, but haven’t been used by your sketch yet. Zero means
no data has arrived.

int x = CurieIMU.readAccelerometer(X_AXIS);

We read the accelerometer value by passing the constant of X_AXIS to the
readAccelerometer method of the CurieIMU. This will return the real time
reading from the sensor. To read other Axis you can pass it the constants
of X_AXIS, Y_AXIS and Z_AXIS.

int absX = abs(x);

Page 109 of 128

In this experiment we are not necessarily interested in the positive or
negative values. We just want to know which ones are the largest, and we
can make a decision from there. We used the ‘abs()’ function which takes
the absolute value of a number (basically removes the (-) sign). We store
that in a local variable called ‘absX’ so that if we ever want to access the
raw x value, we can still do that.

language:cpp
//if Z axis is greater than X and Y its facing upright
if ((absZ > absX) && (absZ > absY))
{
 // base orientation on Z
 if (z > 0)
 {
 brake();
 }
}

 //else if Y is greater than X and Z its on edge
 else if ((absY > absX) && (absY > absZ))
 {
 // if Y is positive orientation (digital pins up)and is set
to 1
 if (y > 0)
 {
 forward();
 }
 //the Y is in the negative orientation (analog pins up) and
is set to 2
 else
 {
 reverse();
 }
}

Once we have the accelerometer readings in absolute value, we can
compare them using an if() statement. In this example we are only looking
to compare the values that have to do with tipping the board to the left and
right, but it still takes all three axes to figure that out. For example, if Y is
greater than X, the Y axis is pointed down (pointed at the direction of
gravity). We then do a final comparison to see if it’s greater than 0 to make
sure it is in the positive direction. We set the direction of the motor based
on those comparisons.

What You Should See

Once the code is uploaded to the 101 board, pick up the 101 and tip it to
the left (analog input pins down). The motor should start running in one
direction. Now tip it in the opposite direction (digital GPIO pins down), and
the motor should run in the opposite direction. When you lay the board flat
the motor should stop. If not, see the Troubleshooting section below.

Page 110 of 128

Troubleshooting

Motor Not Spinning

Make sure you have the motor controller wired up correctly. That is a lot of
wires!

Still No Luck

Double check that your code uploaded to your 101. Sometimes it takes
awhile to upload to the 101 board, so be patient!

Still Not Working

Sometimes the Arduino will disconnect from the computer. Try unplugging
and then replugging it into your USB port.

Experiment 19: Tap Detection

Introduction

One of the strengths of the 101 board is that it has some pretty
sophisticated technology when it comes to gesture and movement
recognition. This is all made possible through the Inertial Measurement Unit
(IMU) on the 101 board. The IMU measures both accelerometer
(gravitational force) and gyroscope (rotation) data. We played around with
the accelerometer in Experiment 18. Let’s dig a little deeper and leverage
the Curie module, which can make sense of the data to determine if you are
taking a step and counting them, detecting if you are tapping on the board
and even its orientation in space.

As an example of using the combination of the IMU and the the Curie
module, we will create a simple RGB circuit that will blink green twice when
you double tap on the top of the 101 board and blink red twice when you
double tap on the bottom of the 101 board.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x Common Cathode RGB LED
• 3x 100Ω Resistor
• 6x Jumper Wires

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

Breadboard - Self-Adhesive
(White)
 PRT-12002

Momentary Pushbutton
Switch - 12mm Square
 COM-09190

Page 111 of 128

You will also need either an Arduino 101 OR Genuino 101 board.

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorials:

• Gyroscope
• Accelerometer
• CurieIMU

Introducing the Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is a combination of sensors used to
determine the sensors' orientation in three-dimensional space. The 101
uses an accelerometer and gyroscope to detect physical orientation (by
measuring gravity pulling on the sensor), and a gyroscope to detect
rotational motion.

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Mini Speaker - PC Mount
12mm 2.048kHz
 COM-07950

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 112 of 128

The 101 board can translate the IMU data into certain pre-programmed
gestures such as: taking a step, tapping or double tapping on it, or dropping
the board. This experiment will focus on detecting taps/double taps, but
please play around with the other example code found under File >
Examples > CurieIMU.

Note: The 101 board has an IMU populated on the board and is
accessed through the Arduino library. There is no wiring required to
use the IMU!

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 19 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > SIK Guide Code > Circuit_19

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 113 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 19

TAP DETECTION

Use the 101 board's on­board IMU to detect a tap and double ta
p and react accordingly.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

#include "CurieIMU.h"

void setup()
{

 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);

 // Initialise the IMU
 CurieIMU.begin();
 CurieIMU.attachInterrupt(eventCallback);

 // Increase Accelerometer range to allow detection of stronge
r taps (< 4g)
 CurieIMU.setAccelerometerRange(3);

 // Reduce threshold to allow detection of weaker taps (>= 750
mg)
 CurieIMU.setDetectionThreshold(CURIE_IMU_TAP, 750); // (750m
g)

 // Set the time window for 2 taps as a double tap (<= 250 mil
liseconds)
 CurieIMU.setDetectionDuration(CURIE_IMU_DOUBLE_TAP, 250);

 // Enable Double­Tap detection
 CurieIMU.interrupts(CURIE_IMU_DOUBLE_TAP);
 }

void loop()
{
 // nothing happens in the loop because all the action happens
 // in the callback function.
 }

static void eventCallback()
{
 if (CurieIMU.getInterruptStatus(CURIE_IMU_DOUBLE_TAP)) {
 if (CurieIMU.tapDetected(Z_AXIS, NEGATIVE))
 {
 digitalWrite(5, HIGH);
 digitalWrite(6, LOW);
 delay(250);
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 delay(250);

Page 114 of 128

 digitalWrite(5, HIGH);
 digitalWrite(6, LOW);
 delay(250);
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 delay(250);
 }
 else if (CurieIMU.tapDetected(Z_AXIS, POSITIVE))
 {
 digitalWrite(5, LOW);
 digitalWrite(6, HIGH);
 delay(250);
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 delay(250);
 digitalWrite(5, LOW);
 digitalWrite(6, HIGH);
 delay(250);
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 delay(250);
 }
 else
 {
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 }
 }
}

Code to Note

CurieIMU.begin();

Initialize or start using the on-board IMU. Without this the 101 board would
never register any IMU data.

CurieIMU.attachInterrupt(eventCallback);

Interrupts are events that interrupt the loop and tell the 101 board to do
something immediately. The 101 then jumps out of the loop, does that
thing, and then gets back into the loop. The interrupt specifies a function to
be done when the interrupt is triggered. In this case eventCallback .

 // Reduce threshold to allow detection of weaker taps (>= 750
mg)
 CurieIMU.setDetectionThreshold(CURIE_IMU_TAP, 750); // (750m
g)

 // Set the time window for 2 taps as a double tap (<= 250 mil
liseconds)
 CurieIMU.setDetectionDuration(CURIE_IMU_DOUBLE_TAP, 250);

To use the IMU to detect a double tap, some setup is required. You need to
set a force threshold for both a hard tap as well as a softer tap. You also
need to specify a duration for a double tap so that the Curie can tell the
difference between a single tap and a double tap.

CurieIMU.interrupts(CURIE_IMU_DOUBLE_TAP); Finally, we attach the
interrupt to the double tap event. So any time a double tap event happens,
the 101 board will execute the eventCallback function.

What You Should see

Page 115 of 128

Once the code is uploaded the RGB should be off. Pick up the board and
double tap the top of the board with your finger at a rhythm and timing that
is similar to a mouse double click. The RGB should blink the color green
twice and then turn off again. If you do the same thing with the bottom of
the board, it will blink red.

Troubleshooting

Library Not Compiling

Double check that you have an #include "CurieIMU.h" statement. If you
do, make sure the header file name is in quotes and not chevrons.

Not Getting a Double Tap

The 101 is looking for a specific timing range for a double tap. Try speeding
up your taps or adjusting the double tap timing in the
CurieIMU.setDetectionDuration(CURIE_IMU_DOUBLE_TAP, 250); method.

Still Not Working

You can set the sensitivity of the accelerometer. The example is set to 2Gs
or twice the amount of gravity we normally experience on Earth. If you
make that smaller, it will increase the sensitivity.

Experiment 20: Using the On-Board
Real Time Clock (RTC)

Introduction

Microcontrollers are really good at keeping time in terms of their own timing.
What we mean by that is their operational time; they function on an internal
clock signal that allows you to keep track of milliseconds and microseconds
since being powered up. But microcontrollers don’t have any way of
knowing real time, which is the time we all base our days and schedules
around.

In this experiment you will set the clock and then display the date and time
on the LCD screen you learned how to use in Experiment 17.

Note: The 101 board doesn’t have a backup battery for the RTC (Real
Time Clock), so if you unplug the board or your batteries die, you will
have to reset the RTC in code or develop a circuit that allows you to
adjust the time.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x Potentiometer
• 1x 3.3V LCD
• 16x Jumper Wires

Page 116 of 128

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

You will also need either an Arduino 101 OR Genuino 101 board.

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorial:

• OLED Hookup Guide

Introducing the Real Time Clock (RTC)

A microcontroller performs well at keeping operational time, the timing
required to do its job. Microcontrollers generally keep track of milliseconds
since being powered on. However, they do a terrible job of keeping track of

Breadboard - Self-Adhesive
(White)
 PRT-12002

Trimpot 10K with Knob
 COM-09806

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Basic 16x2 Character LCD -
White on Black 3.3V
 LCD-09052

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 117 of 128

the time on which we, as human beings, function (“real time”).
Microcontrollers use a Real Time Clock (RTC) to keep track of a set
beginning and time moving forward.

The RTC keeps track of the hours, minutes and seconds of a clock as well
as the day, month and year of the calendar. On the 101 board, this requires
you to set the time and date when you first power it up. From that point
forward it should keep accurate time. You can then use the time to trigger
events to happen at a specific time or day, or even use it as a time stamp to
log data.

Note: If the 101 board loses power, you will need to reset the clock in
your code. Also, the RTC is an on-board component of the 101 board
and requires no further wiring.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 20 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_20

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 118 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 20

DISPLAYING THE DATE AND TIME

This sketch reads the RTC data and prints it on the LCD screen

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

//include the CurieTime Library
#include <CurieTime.h>
#include <LiquidCrystal.h>

//instantiate the lcd
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()
{
 //start lcd at 16 x 2
 lcd.begin(16, 2);

 //clear the lcd
 lcd.clear();

 //set time to 1:35:24 on April 4th, 2016. Please change to y
our time / date
 setTime(1, 35, 24, 4, 10, 2016);
}

void loop()
{
 //create a character array of 16 characters for the time
 char clockTime[16];
 //use sprintf to create a time string of the hour, minte and
seconds
 sprintf(clockTime, " %2d:%2d:%2d ", hour(), minute(), s
econd());

 //create a character array of 15 characters for the date
 char dateTime[16];
 //use sprintf to create a date string from month, day and yea
r
 sprintf(dateTime, " %2d/%2d/%4d ", month(), day(), year
());

 //set cursor to column 0, row 0
 lcd.setCursor(0, 0);
 //print the date string over lcd
 lcd.print(dateTime);
 //set cursor to column 0, row 1
 lcd.setCursor(0, 1);
 //print the time string over lcd
 lcd.print(clockTime);
}

Page 119 of 128

Code to Note

setTime(1,35,00,4,10,2016);

The RTC on the 101 board has to be set when you power it up. You do this
by using the setTime() function. You pass setTime() 6 parameters in order
of hour, minute, seconds, month, day, year. If your 101 board loses power
for some reason, you will have to reset it using this function.

sprintf(dateTime, " %2d/%2d/%4d ", month(), day(), year()); sprintf()
is a string-building function. It is a simple way to build strings by taking data
and placing them in a character array, which in Arduino is basically a string.
The funny %2d and %4d things are where the data is inserted with the
number of digits specified, so %4d is 4 digits. Finally you pass the data you
want to insert into the string as parameters. In this case month(), day(), and
year().

What You Should See

Once the code is completely uploaded you should see two lines of text
show up on your LCD screen. The first line should be the date (which
should only change once a day), and the second line should be the current
time, which you should see actively counting up. If not, see the
Troubleshooting section below.

Troubleshooting

The Screen is Blank or Completely Lit

Fiddle with the contrast by twisting the potentiometer. If it’s incorrectly
adjusted, you won’t be able to read the text.

Not Working At All

Double check the code, specifically that you included the LCD library.

Not Displaying Correct Time

Double check your code. You probably have to update the setTime()
function.

Experiment 21: Using the On-Board
Bluetooth Low Energy (BLE)

Introduction

Here we are at the final experiment, and you have come full circle back to a
single LED. This time the experiment has a twist! Instead of just blinking
this lonely LED, you will control it through your phone or tablet!

The 101 board has Bluetooth Low Energy (BLE) built in. What that means
for you is that you can start to control the 101 board from your phone. BLE
uses a service/property-based approach to device communication. This
approach makes developing across multiple devices easier in the long run,

Page 120 of 128

but if you are new to it, it can be quite daunting. This experiment covers
loading an app to your device that will help with the communication, and we
will go through an example sketch that uses BLE.

This is your final experiment, but in no way are you done learning about the
101 board. We highly recommend checking out the Arduino website for
more information on the 101 board and how the supporting materials evolve
and improve.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x Arduino 101 or Genuino 101 board
• 1x LED
• 1x 100Ω Resistor
• 3x Jumper Wires

Didn’t Get the SIK?

If you are conducting this experiment and didn’t get the SIK, we suggest
using these parts:

You will also need either an Arduino 101 OR Genuino 101 board.

Breadboard - Self-Adhesive
(White)
 PRT-12002

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

LED - Basic Red 5mm
 COM-09590

Resistor 100 Ohm 1/4th Watt
PTH - 20 pack
 COM-13761

Arduino 101
 DEV-13787

Genuino 101
 DEV-13850

Page 121 of 128

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorials:

• Bluetooth Basics
• Curie BLE Library
• BLE Basics

Introducing Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) is a relatively newer communication protocol
using Bluetooth. BLE is increasingly employed in wearable and Internet of
Things (IoT) applications where power management is a concern, and your
device needs to be able to communicate with a broad range of devices
such as phones, cars and other BLE devices.

To standardize the communication protocol with a multitude of devices,
BLE uses a General Attribute (GATT)-based system, which uses a
hierarchy of what are called services based on the device function. For
example, a Fitbit may have a heart rate service as well as a pedometer
service. Each service can be assigned attributes. These attributes hold the
raw data for the service.

An example attribute would be to communicate information about the
device that it is communicating with as well as what data is important for a
given service. In the example of a Fitbit, the number of steps or your pulse
may be an attribute. The big idea is that there are services that allow
devices to know what to expect from each other and to get on the same
page so they can share attributes back and forth. In its simplest form, GATT
allows devices to make assumptions about one another and get down to
the important stuff … sharing information you are trying to communicate.

Note: BLE is built into the Curie module on the 101 board, and there is
no wiring required beyond connecting what you want to control
through BLE.

Hardware Hookup

Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment



Page 122 of 128

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Installing the BLE App

To get you up and running with using BLE with the Arduino 101 we
recommend using the nRF Master Control Panel App. It is available for both
Android and iOS devices, and the best part is that it’s free!

To download the app go to either the Google Play store or the Apple App
store and search for nRF. There are a number of other tools by nRF that we
highly recommend you play with after getting BLE up and running, but for
now we just need the Master Control Panel. Search, download and install
the app – then you’re ready to go!

Open the Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 21 by accessing
the “101 SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > 101 SIK Guide Code >
Circuit_21

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 123 of 128

language:cpp
/*
SparkFun Inventor's Kit
Example sketch 21

BASIC BLE CONTROL

Turn an LED on and off using BLE and either a phone or table
t. Android and iOS devices only!

Based off of the BLE LED example written by Intel Corporation
and included with the Curie BLE Arduino Library.

*/

 #include <CurieBLE.h>

BLEPeripheral blePeripheral; // BLE Peripheral Device (the bo
ard you're programming)
BLEService ledService("19B10000­E8F2­537E­4F6C­D104768A121
4"); // BLE LED Service

//set BLE characteristic
switchCharacteristic("19B10001­E8F2­537E­4F6C­D104768A1214", B
LERead | BLEWrite);

const int ledPin = 13; // pin to use for the LED

 void setup()
{
 // set LED pin to output mode
 pinMode(ledPin, OUTPUT);

 // set advertised local name and service UUID:
 blePeripheral.setLocalName("101 Board");
 blePeripheral.setAdvertisedServiceUuid(ledService.uuid());

 // add service and characteristic:
 blePeripheral.addAttribute(ledService);
 blePeripheral.addAttribute(switchCharacteristic);

 // set the initial value for the characeristic:
 BLEUnsignedCharCharacteristic switchCharacteristic.setValue
(0);

 // begin advertising BLE service:
 blePeripheral.begin();
 }

void loop()
{
 // listen for BLE peripherals to connect:
 BLECentral central = blePeripheral.central();

 // if a central is connected to peripheral:
 if (central)
 {
 // while the central is still connected to peripheral:
 while (central.connected())
 {
 // if the remote device wrote to the characteristic,
 // use the value to control the LED:
 if (switchCharacteristic.written())

Page 124 of 128

 {
 // any value other than 0, turn on the LED
 if (switchCharacteristic.value())
 {
 digitalWrite(ledPin, HIGH);
 }
 //else turn the LED off
 else
 {
 digitalWrite(ledPin, LOW);
 }
 }
 }
 }
 }

Code to Note

BLEService ledService("19B10000­E8F2­537E­4F6C­D104768A1214");

BLE is service based, and a number of services are predefined with a
custom string called a Universally Unique Identifier (UUID). This string is 16
bytes long and, as the name states, is universally unique. This is
instantiating the BLEService object ledService with a specific UUID.

switchCharacteristic("19B10001­E8F2­537E­4F6C­D104768A1214", BLERead | BLEWrite);

Characteristics and attributes are bundled underneath services. You can
create characteristics with their own UUIDs and set them to readable,
writable, or both. We opted for both. Notice that the characteristic UUID is
one digit different from the Service UUID.

blePeripheral.setLocalName("101 Board");

You can name your 101 by using the setLocalName() method. You pass it
a string in quotes. We recommend making this something that you can
easily identify as yours, especially if you are using the 101 in the classroom.

 blePeripheral.setAdvertisedServiceUuid(ledService.uuid());

 // add service and characteristic:
 blePeripheral.addAttribute(ledService);
 blePeripheral.addAttribute(switchCharacteristic);

 // set the initial value for the characeristic:
 switchCharacteristic.setValue(0);

 // begin advertising BLE service:
 blePeripheral.begin();

In this chunk of code we add a service to our peripheral, then bind or add
attributes to the peripheral. We add the ledService and control it through
the switchCharacteristics. We finally set the starting value of the
switchCharacteristics to 0 and start up the peripheral.

From there in the loop function we make sure there is a connection
between our peripheral and a central device (a phone). While we have a
connection, we check if there is a characteristic present and if it has been
written to. If there is a value other than 0, we turn the LED on; if there is no
value, or the value is 0, the LED is turned off.

What You Should See

Open up your Bluetooth connections on your device and start the Master
Control Panel app. Scan for devices, select your 101, and connect to it.

Page 125 of 128

Once it connects, open up the unknown service and select the switchvalue.
Click on the upload logo (arrow pointing up). This will bring up a dialog box.
Enter a number other than 0 and click send.

Page 126 of 128

The LED should turn on! Bring up the same dialog box, enter the number 0
and click send. The LED should turn off.

Troubleshooting

LED Not Lighting Up

You know the drill: check your wiring, check to see if the LED is inserted
backward.

Not Able to Connect to the 101’s Bluetooth

Make sure that your sketch uploaded! You have to upload the sketch for the
BLE signal to be broadcast from the 101 board.

Still Not Working

Try restarting your phone’s or tablet’s Bluetooth and scanning for local
devices again.

Resources and Going Further
There are tons of sensors and shields that you can hook up to your Arduino
101 board to help take your projects to the next level. Here is some further
reading that may help you along in learning more about the world of
electronics.

Page 127 of 128

For more info on Arduino, check out these tutorials:

• Arduino Resources and Curriculum
• Arduino Comparison Guide
• Arduino Shields
• Installing Arduino
• Installing an Arduino Library
• Arduino Data Types

For more hardware-related tutorials, give these a read:

• Breadboards
• Working With Wire
• Sewing With Conductive Thread
• How Do I Power My Project?

Page 128 of 128

5/25/2016https://learn.sparkfun.com/tutorials/sik-experiment-guide-for-the-arduino-101genuino-101-...

